kunjcr2 commited on
Commit
2965a1f
·
verified ·
1 Parent(s): 662b7b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -174
README.md CHANGED
@@ -1,199 +1,118 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
 
 
 
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - Assistant
5
+ license: apache-2.0
6
+ datasets:
7
+ - teknium/OpenHermes-2.5
8
+ language:
9
+ - en
10
+ base_model:
11
+ - meta-llama/Llama-3.2-3B
12
  ---
13
 
14
+ # Llama-3.2-3B LoRA Fine-tune on OpenHermes
15
 
16
+ ## 📖 Overview
17
 
18
+ This model is a **LoRA fine-tuned version of `meta-llama/Llama-3.2-3B`** on the [OpenHermes dataset](https://huggingface.co/datasets/teknium/OpenHermes-2.5).
19
+ The goal of this run was to adapt Llama-3.2-3B for improved instruction-following using a high-quality, multi-domain SFT dataset.
20
 
21
+ Fine-tuning was performed with **parameter-efficient fine-tuning (PEFT)** using **LoRA adapters**. Only \~0.75% of model parameters were trained, keeping compute and memory usage efficient while still yielding strong gains.
22
 
23
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ ## ⚙️ Training Configuration
26
+
27
+ **Base Model:** `meta-llama/Llama-3.2-3B`
28
+ **Method:** QLoRA (LoRA rank 16, α=32, dropout=0.05)
29
+ **Trainable Parameters:** 24.3M / 3.24B (\~0.75%)
30
+
31
+ **Training Arguments:**
32
+
33
+ ```python
34
+ training_args = TrainingArguments(
35
+ output_dir="./llama_finetune_lora",
36
+ per_device_train_batch_size=2,
37
+ gradient_accumulation_steps=8,
38
+ learning_rate=2e-4,
39
+ num_train_epochs=1,
40
+ lr_scheduler_type="cosine",
41
+ warmup_ratio=0.03,
42
+ weight_decay=0.01,
43
+ logging_steps=200,
44
+
45
+ evaluation_strategy="steps",
46
+ eval_steps=200,
47
+ save_strategy="steps",
48
+ save_steps=1000,
49
+ save_total_limit=2,
50
+ load_best_model_at_end=True,
51
+ metric_for_best_model="eval_loss",
52
+ greater_is_better=False,
53
+
54
+ bf16=True, # A100 support
55
+ fp16=False,
56
+ gradient_checkpointing=True,
57
+ torch_compile=False,
58
+ report_to="none",
59
+ seed=42
60
+ )
61
+ ```
62
 
63
+ ---
64
 
65
+ ## 📊 Training Metrics
66
 
67
+ Run stopped at **2000 steps** (\~4.5h on A100). Loss steadily improved and validation stabilized around 0.20.
68
 
69
+ | Step | Training Loss | Validation Loss |
70
+ | ---- | ------------- | --------------- |
71
+ | 200 | 1.2781 | 0.2202 |
72
+ | 400 | 0.2167 | 0.2134 |
73
+ | 600 | 0.2139 | 0.2098 |
74
+ | 800 | 0.2120 | 0.2072 |
75
+ | 1000 | 0.2085 | 0.2057 |
76
+ | 1200 | 0.1996 | 0.2043 |
77
+ | 1400 | 0.2056 | 0.2034 |
78
+ | 1600 | 0.2016 | 0.2023 |
79
+ | 1800 | 0.2000 | 0.2012 |
80
+ | 2000 | 0.2027 | 0.2005 |
81
 
82
+ 📉 **Validation loss converged near \~0.20**, indicating effective adaptation.
83
 
84
+ ---
85
 
86
+ ## 🚀 Usage
87
 
88
+ ```python
89
+ from transformers import AutoModelForCausalLM, AutoTokenizer
90
+ from peft import PeftModel
91
 
92
+ base = "meta-llama/Llama-3.2-3B"
93
+ adapter = "kunjcr2/llama3-3b-lora-openhermes" # replace with your Hub repo
94
 
95
+ # Load base + adapter
96
+ tok = AutoTokenizer.from_pretrained(adapter)
97
+ model = AutoModelForCausalLM.from_pretrained(base, torch_dtype="auto", device_map="auto")
98
+ model = PeftModel.from_pretrained(model, adapter)
99
 
100
+ # Generate
101
+ prompt = "Explain the concept of binary search trees."
102
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
103
+ outputs = model.generate(**inputs, max_new_tokens=256)
104
+ print(tok.decode(outputs[0], skip_special_tokens=True))
105
+ ```
106
 
107
+ ---
108
 
109
+ ## 📌 Notes
110
 
111
+ * Training was run with **bf16 + gradient checkpointing** on A100 (40GB).
112
+ * Only adapters are uploaded (small size). Use together with the base model.
113
+ * Repo includes: `adapter_model.safetensors`, `adapter_config.json`, tokenizer files, and this README.
114
+ * Training stopped early at **2000 steps (\~17% of planned)** due to good convergence.
115
 
116
+ ---
117
 
118
+ If you like this model, feel free to try it out and extend training. Future runs could include more steps, preference tuning (DPO/ORPO), or domain-specific mixtures.