--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-fl102 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: wav2vec2-large-mms-1b102-ckb_30cent results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ckb split: test args: ckb metrics: - name: Wer type: wer value: 0.4114560559685177 --- # wav2vec2-large-mms-1b102-ckb_30cent This model is a fine-tuned version of [facebook/mms-1b-fl102](https://huggingface.co/facebook/mms-1b-fl102) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3046 - Wer: 0.4115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.1601 | 4.0988 | 500 | 0.3159 | 0.4227 | | 0.5802 | 8.1975 | 1000 | 0.3046 | 0.4115 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0