labdmitriy commited on
Commit
d039f28
·
verified ·
1 Parent(s): fe96f85

Add new SentenceTransformer model.

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -372,19 +372,19 @@ model-index:
372
  type: bge-base-en-train
373
  metrics:
374
  - type: cosine_accuracy
375
- value: 0.8269230769230769
376
  name: Cosine Accuracy
377
  - type: dot_accuracy
378
- value: 0.17307692307692307
379
  name: Dot Accuracy
380
  - type: manhattan_accuracy
381
- value: 0.8269230769230769
382
  name: Manhattan Accuracy
383
  - type: euclidean_accuracy
384
- value: 0.8269230769230769
385
  name: Euclidean Accuracy
386
  - type: max_accuracy
387
- value: 0.8269230769230769
388
  name: Max Accuracy
389
  - task:
390
  type: triplet
@@ -400,13 +400,13 @@ model-index:
400
  value: 0.015151515151515152
401
  name: Dot Accuracy
402
  - type: manhattan_accuracy
403
- value: 0.9696969696969697
404
  name: Manhattan Accuracy
405
  - type: euclidean_accuracy
406
  value: 0.9848484848484849
407
  name: Euclidean Accuracy
408
  - type: max_accuracy
409
- value: 0.9848484848484849
410
  name: Max Accuracy
411
  ---
412
 
@@ -508,23 +508,23 @@ You can finetune this model on your own dataset.
508
 
509
  | Metric | Value |
510
  |:-------------------|:-----------|
511
- | cosine_accuracy | 0.8269 |
512
- | dot_accuracy | 0.1731 |
513
- | manhattan_accuracy | 0.8269 |
514
- | euclidean_accuracy | 0.8269 |
515
- | **max_accuracy** | **0.8269** |
516
 
517
  #### Triplet
518
  * Dataset: `bge-base-en-eval`
519
  * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
520
 
521
- | Metric | Value |
522
- |:-------------------|:-----------|
523
- | cosine_accuracy | 0.9848 |
524
- | dot_accuracy | 0.0152 |
525
- | manhattan_accuracy | 0.9697 |
526
- | euclidean_accuracy | 0.9848 |
527
- | **max_accuracy** | **0.9848** |
528
 
529
  <!--
530
  ## Bias, Risks and Limitations
@@ -713,8 +713,8 @@ You can finetune this model on your own dataset.
713
  ### Training Logs
714
  | Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
715
  |:-----:|:----:|:-----------------------------:|:------------------------------:|
716
- | 0 | 0 | - | 0.8269 |
717
- | 5.0 | 65 | 0.9848 | - |
718
 
719
 
720
  ### Framework Versions
 
372
  type: bge-base-en-train
373
  metrics:
374
  - type: cosine_accuracy
375
+ value: 0.8076923076923077
376
  name: Cosine Accuracy
377
  - type: dot_accuracy
378
+ value: 0.19230769230769232
379
  name: Dot Accuracy
380
  - type: manhattan_accuracy
381
+ value: 0.8076923076923077
382
  name: Manhattan Accuracy
383
  - type: euclidean_accuracy
384
+ value: 0.8076923076923077
385
  name: Euclidean Accuracy
386
  - type: max_accuracy
387
+ value: 0.8076923076923077
388
  name: Max Accuracy
389
  - task:
390
  type: triplet
 
400
  value: 0.015151515151515152
401
  name: Dot Accuracy
402
  - type: manhattan_accuracy
403
+ value: 1.0
404
  name: Manhattan Accuracy
405
  - type: euclidean_accuracy
406
  value: 0.9848484848484849
407
  name: Euclidean Accuracy
408
  - type: max_accuracy
409
+ value: 1.0
410
  name: Max Accuracy
411
  ---
412
 
 
508
 
509
  | Metric | Value |
510
  |:-------------------|:-----------|
511
+ | cosine_accuracy | 0.8077 |
512
+ | dot_accuracy | 0.1923 |
513
+ | manhattan_accuracy | 0.8077 |
514
+ | euclidean_accuracy | 0.8077 |
515
+ | **max_accuracy** | **0.8077** |
516
 
517
  #### Triplet
518
  * Dataset: `bge-base-en-eval`
519
  * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
520
 
521
+ | Metric | Value |
522
+ |:-------------------|:--------|
523
+ | cosine_accuracy | 0.9848 |
524
+ | dot_accuracy | 0.0152 |
525
+ | manhattan_accuracy | 1.0 |
526
+ | euclidean_accuracy | 0.9848 |
527
+ | **max_accuracy** | **1.0** |
528
 
529
  <!--
530
  ## Bias, Risks and Limitations
 
713
  ### Training Logs
714
  | Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
715
  |:-----:|:----:|:-----------------------------:|:------------------------------:|
716
+ | 0 | 0 | - | 0.8077 |
717
+ | 5.0 | 65 | 1.0 | - |
718
 
719
 
720
  ### Framework Versions