Add new SentenceTransformer model.
Browse files
README.md
CHANGED
@@ -372,19 +372,19 @@ model-index:
|
|
372 |
type: bge-base-en-train
|
373 |
metrics:
|
374 |
- type: cosine_accuracy
|
375 |
-
value: 0.
|
376 |
name: Cosine Accuracy
|
377 |
- type: dot_accuracy
|
378 |
-
value: 0.
|
379 |
name: Dot Accuracy
|
380 |
- type: manhattan_accuracy
|
381 |
-
value: 0.
|
382 |
name: Manhattan Accuracy
|
383 |
- type: euclidean_accuracy
|
384 |
-
value: 0.
|
385 |
name: Euclidean Accuracy
|
386 |
- type: max_accuracy
|
387 |
-
value: 0.
|
388 |
name: Max Accuracy
|
389 |
- task:
|
390 |
type: triplet
|
@@ -400,13 +400,13 @@ model-index:
|
|
400 |
value: 0.015151515151515152
|
401 |
name: Dot Accuracy
|
402 |
- type: manhattan_accuracy
|
403 |
-
value: 0
|
404 |
name: Manhattan Accuracy
|
405 |
- type: euclidean_accuracy
|
406 |
value: 0.9848484848484849
|
407 |
name: Euclidean Accuracy
|
408 |
- type: max_accuracy
|
409 |
-
value: 0
|
410 |
name: Max Accuracy
|
411 |
---
|
412 |
|
@@ -508,23 +508,23 @@ You can finetune this model on your own dataset.
|
|
508 |
|
509 |
| Metric | Value |
|
510 |
|:-------------------|:-----------|
|
511 |
-
| cosine_accuracy | 0.
|
512 |
-
| dot_accuracy | 0.
|
513 |
-
| manhattan_accuracy | 0.
|
514 |
-
| euclidean_accuracy | 0.
|
515 |
-
| **max_accuracy** | **0.
|
516 |
|
517 |
#### Triplet
|
518 |
* Dataset: `bge-base-en-eval`
|
519 |
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
520 |
|
521 |
-
| Metric | Value
|
522 |
-
|
523 |
-
| cosine_accuracy | 0.9848
|
524 |
-
| dot_accuracy | 0.0152
|
525 |
-
| manhattan_accuracy | 0
|
526 |
-
| euclidean_accuracy | 0.9848
|
527 |
-
| **max_accuracy** | **0
|
528 |
|
529 |
<!--
|
530 |
## Bias, Risks and Limitations
|
@@ -713,8 +713,8 @@ You can finetune this model on your own dataset.
|
|
713 |
### Training Logs
|
714 |
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|
715 |
|:-----:|:----:|:-----------------------------:|:------------------------------:|
|
716 |
-
| 0 | 0 | - | 0.
|
717 |
-
| 5.0 | 65 | 0
|
718 |
|
719 |
|
720 |
### Framework Versions
|
|
|
372 |
type: bge-base-en-train
|
373 |
metrics:
|
374 |
- type: cosine_accuracy
|
375 |
+
value: 0.8076923076923077
|
376 |
name: Cosine Accuracy
|
377 |
- type: dot_accuracy
|
378 |
+
value: 0.19230769230769232
|
379 |
name: Dot Accuracy
|
380 |
- type: manhattan_accuracy
|
381 |
+
value: 0.8076923076923077
|
382 |
name: Manhattan Accuracy
|
383 |
- type: euclidean_accuracy
|
384 |
+
value: 0.8076923076923077
|
385 |
name: Euclidean Accuracy
|
386 |
- type: max_accuracy
|
387 |
+
value: 0.8076923076923077
|
388 |
name: Max Accuracy
|
389 |
- task:
|
390 |
type: triplet
|
|
|
400 |
value: 0.015151515151515152
|
401 |
name: Dot Accuracy
|
402 |
- type: manhattan_accuracy
|
403 |
+
value: 1.0
|
404 |
name: Manhattan Accuracy
|
405 |
- type: euclidean_accuracy
|
406 |
value: 0.9848484848484849
|
407 |
name: Euclidean Accuracy
|
408 |
- type: max_accuracy
|
409 |
+
value: 1.0
|
410 |
name: Max Accuracy
|
411 |
---
|
412 |
|
|
|
508 |
|
509 |
| Metric | Value |
|
510 |
|:-------------------|:-----------|
|
511 |
+
| cosine_accuracy | 0.8077 |
|
512 |
+
| dot_accuracy | 0.1923 |
|
513 |
+
| manhattan_accuracy | 0.8077 |
|
514 |
+
| euclidean_accuracy | 0.8077 |
|
515 |
+
| **max_accuracy** | **0.8077** |
|
516 |
|
517 |
#### Triplet
|
518 |
* Dataset: `bge-base-en-eval`
|
519 |
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
520 |
|
521 |
+
| Metric | Value |
|
522 |
+
|:-------------------|:--------|
|
523 |
+
| cosine_accuracy | 0.9848 |
|
524 |
+
| dot_accuracy | 0.0152 |
|
525 |
+
| manhattan_accuracy | 1.0 |
|
526 |
+
| euclidean_accuracy | 0.9848 |
|
527 |
+
| **max_accuracy** | **1.0** |
|
528 |
|
529 |
<!--
|
530 |
## Bias, Risks and Limitations
|
|
|
713 |
### Training Logs
|
714 |
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|
715 |
|:-----:|:----:|:-----------------------------:|:------------------------------:|
|
716 |
+
| 0 | 0 | - | 0.8077 |
|
717 |
+
| 5.0 | 65 | 1.0 | - |
|
718 |
|
719 |
|
720 |
### Framework Versions
|