---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:208
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: '
Name : SkillAdvance Academy
Category: Online Learning Platform, Professional Development
Department: Engineering
Location: Austin, TX
Amount: 1875.67
Card: Continuous Improvement Initiative
Trip Name: unknown
'
sentences:
- '
Name : Black Wolf
Category: Luxury Vehicle Rentals, Corporate Services
Department: Executive
Location: Tokyo, Japan
Amount: 1478.67
Card: Execute Account
Trip Name: Tokyo Summit 2023
'
- '
Name : Kreutz & Partners
Category: Strategic Consulting
Department: Marketing
Location: Zurich, Switzerland
Amount: 982.75
Card: Digital Growth Strategy
Trip Name: unknown
'
- '
Name : Nordiska Hosting Collective
Category: Cloud Storage Solutions, Data Security Services
Department: IT Operations
Location: Helsinki, Finland
Amount: 1439.57
Card: Annual Data Management Plan
Trip Name: unknown
'
- source_sentence: '
Name : FusionLink
Category: Event Management Solutions, Digital Strategy Services
Department: Sales
Location: New York, NY
Amount: 982.75
Card: Product Launch Activation
Trip Name: unknown
'
sentences:
- '
Name : Globetrotter Partners
Category: Lodging Services, Corporate Retreat Planning
Department: Executive
Location: Banff, Canada
Amount: 1559.75
Card: Leadership Development Seminar
Trip Name: unknown
'
- '
Name : SkyHigh Consultancies
Category: Consulting Services, Business Travel Agencies
Department: Sales
Location: Geneva, Switzerland
Amount: 1349.58
Card: Strategic Client Meetings
Trip Name: Global Expansion Initiative
'
- '
Name : Willink Labs
Category: Consulting Services, Professional Services
Department: Engineering
Location: San Francisco, CA
Amount: 4500.0
Card: Backend Systems Upgrade Analysis
Trip Name: unknown
'
- source_sentence: '
Name : RBC
Category: Transaction Processing, Financial Services
Department: Finance
Location: Limassol, Cyprus
Amount: 843.56
Card: Quarterly Financial Management
Trip Name: unknown
'
sentences:
- '
Name : Kepler Dynamics
Category: Strategic Consultancy, Tech Solutions
Department: Finance
Location: Zurich, Switzerland
Amount: 2375.88
Card: Integration Strategy Review
Trip Name: unknown
'
- '
Name : Global Interconnectivity Corp
Category: Data Management Services, Network Infrastructure Consultants
Department: Engineering
Location: Zurich, Switzerland
Amount: 1987.54
Card: Unified Communication Rollout
Trip Name: unknown
'
- '
Name : TechSupply Inc.
Category: Electronics Retail, Supply Chain
Department: Research & Development
Location: Berlin, Germany
Amount: 742.45
Card: New Prototype Equipment
Trip Name: unknown
'
- source_sentence: '
Name : EcoClean Systems
Category: Environmental Services, Industrial Equipment Care
Department: Office Administration
Location: San Francisco, CA
Amount: 952.63
Card: Essential Facility Sustainability
Trip Name: unknown
'
sentences:
- '
Name : Wunder
Category: Advanced Electronics
Department: Operations
Location: Munich, Germany
Amount: 1643.87
Card: Enterprise Systems Initiative
Trip Name: Q2-MUC-TechOps
'
- '
Name : Pacific Union Services
Category: Financial Consulting, Subscription Management
Department: Finance
Location: Singapore
Amount: 129.58
Card: Quarterly Financial Account Review
Trip Name: unknown
'
- '
Name : FirmTrust Advisory
Category: Legal Services, Financial Planning
Department: Executive
Location: London, UK
Amount: 1534.76
Card: Global Expansion Strategy
Trip Name: unknown
'
- source_sentence: '
Name : ComplyTech Solutions
Category: Regulatory Software, Consultancy Services
Department: Compliance
Location: Brussels, Belgium
Amount: 1095.45
Card: Regulatory Compliance Optimization Plan
Trip Name: unknown
'
sentences:
- '
Name : TechXperts Global
Category: IT Services, Consulting
Department: IT Operations
Location: Berlin, Germany
Amount: 987.49
Card: Quarterly System Assessment
Trip Name: unknown
'
- '
Name : Optix Global
Category: Digital Storage Solutions, Office Essentials Provider
Department: All Departments
Location: Tokyo, Japan
Amount: 568.77
Card: Monthly Office Needs
Trip Name: unknown
'
- '
Name : Gandalf
Category: Financial Services, Consulting
Department: Finance
Location: Singapore
Amount: 457.29
Card: Financial Advisory Services
Trip Name: unknown
'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.8076923076923077
name: Cosine Accuracy
- type: dot_accuracy
value: 0.19230769230769232
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8076923076923077
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8076923076923077
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8076923076923077
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 0.9848484848484849
name: Cosine Accuracy
- type: dot_accuracy
value: 0.015151515151515152
name: Dot Accuracy
- type: manhattan_accuracy
value: 1.0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9848484848484849
name: Euclidean Accuracy
- type: max_accuracy
value: 1.0
name: Max Accuracy
---
# SentenceTransformer based on BAAI/bge-base-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("labdmitriy/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
'\nName : Gandalf\nCategory: Financial Services, Consulting\nDepartment: Finance\nLocation: Singapore\nAmount: 457.29\nCard: Financial Advisory Services\nTrip Name: unknown\n',
'\nName : TechXperts Global\nCategory: IT Services, Consulting\nDepartment: IT Operations\nLocation: Berlin, Germany\nAmount: 987.49\nCard: Quarterly System Assessment\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `bge-base-en-train`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.8077 |
| dot_accuracy | 0.1923 |
| manhattan_accuracy | 0.8077 |
| euclidean_accuracy | 0.8077 |
| **max_accuracy** | **0.8077** |
#### Triplet
* Dataset: `bge-base-en-eval`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:--------|
| cosine_accuracy | 0.9848 |
| dot_accuracy | 0.0152 |
| manhattan_accuracy | 1.0 |
| euclidean_accuracy | 0.9848 |
| **max_accuracy** | **1.0** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 208 training samples
* Columns: sentence
and label
* Approximate statistics based on the first 208 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details |
Name : FTC
Category: Regulatory Compliance Services, Business Consulting
Department: Legal
Location: Toronto, Canada
Amount: 3594.76
Card: Annual Compliance Assessment
Trip Name: unknown
| 0
|
|
Name : IntelliSync Integration
Category: Connectivity Services, Enterprise Solutions
Department: IT Operations
Location: San Francisco, CA
Amount: 1387.42
Card: Global Connectivity Suite
Trip Name: unknown
| 1
|
|
Name : Omachi Meitetsu
Category: Transportation Services, Travel Services
Department: Sales
Location: Hakkuba Japan
Amount: 120.0
Card: Quarterly Travel Expenses
Trip Name: unknown
| 2
|
* Loss: [BatchSemiHardTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 52 evaluation samples
* Columns: sentence
and label
* Approximate statistics based on the first 52 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details |
Name : NexGen Fiscal Systems
Category: Financial Software Solutions, Revenue Management Services
Department: Finance
Location: San Francisco, CA
Amount: 2749.95
Card: Q4 Revenue Optimization Initiative
Trip Name: unknown
| 15
|
|
Name : Midnight Brasserie
Category: Culinary Experience, Event Catering
Department: Marketing
Location: Paris, France
Amount: 456.87
Card: Quarterly Team Building
Trip Name: Summer Collaboration Retreat
| 5
|
|
Name : Zero One
Category: Media Production
Department: Marketing
Location: New York, NY
Amount: 7500.0
Card: Sales Operating Budget
Trip Name: unknown
| 13
|
* Loss: [BatchSemiHardTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters