--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:208 - loss:BatchSemiHardTripletLoss base_model: BAAI/bge-base-en widget: - source_sentence: ' Name : SkillAdvance Academy Category: Online Learning Platform, Professional Development Department: Engineering Location: Austin, TX Amount: 1875.67 Card: Continuous Improvement Initiative Trip Name: unknown ' sentences: - ' Name : Black Wolf Category: Luxury Vehicle Rentals, Corporate Services Department: Executive Location: Tokyo, Japan Amount: 1478.67 Card: Execute Account Trip Name: Tokyo Summit 2023 ' - ' Name : Kreutz & Partners Category: Strategic Consulting Department: Marketing Location: Zurich, Switzerland Amount: 982.75 Card: Digital Growth Strategy Trip Name: unknown ' - ' Name : Nordiska Hosting Collective Category: Cloud Storage Solutions, Data Security Services Department: IT Operations Location: Helsinki, Finland Amount: 1439.57 Card: Annual Data Management Plan Trip Name: unknown ' - source_sentence: ' Name : FusionLink Category: Event Management Solutions, Digital Strategy Services Department: Sales Location: New York, NY Amount: 982.75 Card: Product Launch Activation Trip Name: unknown ' sentences: - ' Name : Globetrotter Partners Category: Lodging Services, Corporate Retreat Planning Department: Executive Location: Banff, Canada Amount: 1559.75 Card: Leadership Development Seminar Trip Name: unknown ' - ' Name : SkyHigh Consultancies Category: Consulting Services, Business Travel Agencies Department: Sales Location: Geneva, Switzerland Amount: 1349.58 Card: Strategic Client Meetings Trip Name: Global Expansion Initiative ' - ' Name : Willink Labs Category: Consulting Services, Professional Services Department: Engineering Location: San Francisco, CA Amount: 4500.0 Card: Backend Systems Upgrade Analysis Trip Name: unknown ' - source_sentence: ' Name : RBC Category: Transaction Processing, Financial Services Department: Finance Location: Limassol, Cyprus Amount: 843.56 Card: Quarterly Financial Management Trip Name: unknown ' sentences: - ' Name : Kepler Dynamics Category: Strategic Consultancy, Tech Solutions Department: Finance Location: Zurich, Switzerland Amount: 2375.88 Card: Integration Strategy Review Trip Name: unknown ' - ' Name : Global Interconnectivity Corp Category: Data Management Services, Network Infrastructure Consultants Department: Engineering Location: Zurich, Switzerland Amount: 1987.54 Card: Unified Communication Rollout Trip Name: unknown ' - ' Name : TechSupply Inc. Category: Electronics Retail, Supply Chain Department: Research & Development Location: Berlin, Germany Amount: 742.45 Card: New Prototype Equipment Trip Name: unknown ' - source_sentence: ' Name : EcoClean Systems Category: Environmental Services, Industrial Equipment Care Department: Office Administration Location: San Francisco, CA Amount: 952.63 Card: Essential Facility Sustainability Trip Name: unknown ' sentences: - ' Name : Wunder Category: Advanced Electronics Department: Operations Location: Munich, Germany Amount: 1643.87 Card: Enterprise Systems Initiative Trip Name: Q2-MUC-TechOps ' - ' Name : Pacific Union Services Category: Financial Consulting, Subscription Management Department: Finance Location: Singapore Amount: 129.58 Card: Quarterly Financial Account Review Trip Name: unknown ' - ' Name : FirmTrust Advisory Category: Legal Services, Financial Planning Department: Executive Location: London, UK Amount: 1534.76 Card: Global Expansion Strategy Trip Name: unknown ' - source_sentence: ' Name : ComplyTech Solutions Category: Regulatory Software, Consultancy Services Department: Compliance Location: Brussels, Belgium Amount: 1095.45 Card: Regulatory Compliance Optimization Plan Trip Name: unknown ' sentences: - ' Name : TechXperts Global Category: IT Services, Consulting Department: IT Operations Location: Berlin, Germany Amount: 987.49 Card: Quarterly System Assessment Trip Name: unknown ' - ' Name : Optix Global Category: Digital Storage Solutions, Office Essentials Provider Department: All Departments Location: Tokyo, Japan Amount: 568.77 Card: Monthly Office Needs Trip Name: unknown ' - ' Name : Gandalf Category: Financial Services, Consulting Department: Finance Location: Singapore Amount: 457.29 Card: Financial Advisory Services Trip Name: unknown ' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy model-index: - name: SentenceTransformer based on BAAI/bge-base-en results: - task: type: triplet name: Triplet dataset: name: bge base en train type: bge-base-en-train metrics: - type: cosine_accuracy value: 0.8076923076923077 name: Cosine Accuracy - type: dot_accuracy value: 0.19230769230769232 name: Dot Accuracy - type: manhattan_accuracy value: 0.8076923076923077 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.8076923076923077 name: Euclidean Accuracy - type: max_accuracy value: 0.8076923076923077 name: Max Accuracy - task: type: triplet name: Triplet dataset: name: bge base en eval type: bge-base-en-eval metrics: - type: cosine_accuracy value: 0.9848484848484849 name: Cosine Accuracy - type: dot_accuracy value: 0.015151515151515152 name: Dot Accuracy - type: manhattan_accuracy value: 1.0 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9848484848484849 name: Euclidean Accuracy - type: max_accuracy value: 1.0 name: Max Accuracy --- # SentenceTransformer based on BAAI/bge-base-en This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("labdmitriy/finetuned-bge-base-en") # Run inference sentences = [ '\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n', '\nName : Gandalf\nCategory: Financial Services, Consulting\nDepartment: Finance\nLocation: Singapore\nAmount: 457.29\nCard: Financial Advisory Services\nTrip Name: unknown\n', '\nName : TechXperts Global\nCategory: IT Services, Consulting\nDepartment: IT Operations\nLocation: Berlin, Germany\nAmount: 987.49\nCard: Quarterly System Assessment\nTrip Name: unknown\n', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `bge-base-en-train` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.8077 | | dot_accuracy | 0.1923 | | manhattan_accuracy | 0.8077 | | euclidean_accuracy | 0.8077 | | **max_accuracy** | **0.8077** | #### Triplet * Dataset: `bge-base-en-eval` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:--------| | cosine_accuracy | 0.9848 | | dot_accuracy | 0.0152 | | manhattan_accuracy | 1.0 | | euclidean_accuracy | 0.9848 | | **max_accuracy** | **1.0** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 208 training samples * Columns: sentence and label * Approximate statistics based on the first 208 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
Name : FTC
Category: Regulatory Compliance Services, Business Consulting
Department: Legal
Location: Toronto, Canada
Amount: 3594.76
Card: Annual Compliance Assessment
Trip Name: unknown
| 0 | |
Name : IntelliSync Integration
Category: Connectivity Services, Enterprise Solutions
Department: IT Operations
Location: San Francisco, CA
Amount: 1387.42
Card: Global Connectivity Suite
Trip Name: unknown
| 1 | |
Name : Omachi Meitetsu
Category: Transportation Services, Travel Services
Department: Sales
Location: Hakkuba Japan
Amount: 120.0
Card: Quarterly Travel Expenses
Trip Name: unknown
| 2 | * Loss: [BatchSemiHardTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 52 evaluation samples * Columns: sentence and label * Approximate statistics based on the first 52 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------| |
Name : NexGen Fiscal Systems
Category: Financial Software Solutions, Revenue Management Services
Department: Finance
Location: San Francisco, CA
Amount: 2749.95
Card: Q4 Revenue Optimization Initiative
Trip Name: unknown
| 15 | |
Name : Midnight Brasserie
Category: Culinary Experience, Event Catering
Department: Marketing
Location: Paris, France
Amount: 456.87
Card: Quarterly Team Building
Trip Name: Summer Collaboration Retreat
| 5 | |
Name : Zero One
Category: Media Production
Department: Marketing
Location: New York, NY
Amount: 7500.0
Card: Sales Operating Budget
Trip Name: unknown
| 13 | * Loss: [BatchSemiHardTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy | |:-----:|:----:|:-----------------------------:|:------------------------------:| | 0 | 0 | - | 0.8077 | | 5.0 | 65 | 1.0 | - | ### Framework Versions - Python: 3.12.8 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### BatchSemiHardTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```