--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v61 results: [] --- # text_shortening_model_v61 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7370 - Rouge1: 0.6559 - Rouge2: 0.469 - Rougel: 0.6075 - Rougelsum: 0.6079 - Bert precision: 0.9075 - Bert recall: 0.9017 - Bert f1-score: 0.9041 - Average word count: 7.9152 - Max word count: 15 - Min word count: 3 - Average token count: 12.1741 - % shortened texts with length > 12: 6.6964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:-------------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 2.2731 | 1.0 | 49 | 1.3305 | 0.3966 | 0.2328 | 0.3397 | 0.3396 | 0.7258 | 0.7385 | 0.7316 | 9.3438 | 19 | 0 | 16.3929 | 28.5714 | | 1.3225 | 2.0 | 98 | 0.9829 | 0.6051 | 0.422 | 0.5558 | 0.5557 | 0.8863 | 0.879 | 0.8822 | 8.0491 | 17 | 0 | 12.6607 | 8.0357 | | 1.0933 | 3.0 | 147 | 0.8678 | 0.6346 | 0.4487 | 0.5869 | 0.5875 | 0.9012 | 0.8928 | 0.8965 | 7.8527 | 15 | 0 | 12.1607 | 5.8036 | | 0.9836 | 4.0 | 196 | 0.8145 | 0.6404 | 0.449 | 0.5911 | 0.5918 | 0.9034 | 0.8971 | 0.8997 | 8.0179 | 15 | 3 | 12.1964 | 8.4821 | | 0.9182 | 5.0 | 245 | 0.7860 | 0.647 | 0.4598 | 0.597 | 0.5974 | 0.9055 | 0.8989 | 0.9017 | 7.8884 | 15 | 3 | 12.1116 | 7.1429 | | 0.8756 | 6.0 | 294 | 0.7659 | 0.6479 | 0.4606 | 0.5999 | 0.5996 | 0.9054 | 0.8982 | 0.9013 | 7.8839 | 15 | 3 | 12.1205 | 7.1429 | | 0.84 | 7.0 | 343 | 0.7517 | 0.6544 | 0.4688 | 0.6062 | 0.6061 | 0.9067 | 0.9008 | 0.9033 | 7.9196 | 15 | 3 | 12.1741 | 7.1429 | | 0.8256 | 8.0 | 392 | 0.7424 | 0.6515 | 0.4644 | 0.6033 | 0.6033 | 0.9068 | 0.9001 | 0.903 | 7.8705 | 15 | 3 | 12.1473 | 6.25 | | 0.8198 | 9.0 | 441 | 0.7386 | 0.656 | 0.469 | 0.6076 | 0.608 | 0.9076 | 0.9017 | 0.9041 | 7.9107 | 15 | 3 | 12.1696 | 6.6964 | | 0.8058 | 10.0 | 490 | 0.7370 | 0.6559 | 0.469 | 0.6075 | 0.6079 | 0.9075 | 0.9017 | 0.9041 | 7.9152 | 15 | 3 | 12.1741 | 6.6964 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3