lealdaniel commited on
Commit
7192cc4
·
verified ·
1 Parent(s): 3df1193

Add level embeddings model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:464
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: analista financeiro pl
12
+ sentences:
13
+ - jovem aprendiz
14
+ - júnior
15
+ - pleno
16
+ - source_sentence: analista de comunicacao junior
17
+ sentences:
18
+ - júnior
19
+ - júnior
20
+ - gerente
21
+ - source_sentence: l3
22
+ sentences:
23
+ - júnior
24
+ - sênior
25
+ - gerente sênior
26
+ - source_sentence: especialista i
27
+ sentences:
28
+ - sênior
29
+ - especialista
30
+ - especialista ii
31
+ - source_sentence: coordenador(a) sist. automação conteúdo i
32
+ sentences:
33
+ - júnior
34
+ - assistente
35
+ - coordenador
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@3
41
+ - cosine_accuracy@5
42
+ - cosine_accuracy@10
43
+ - cosine_precision@1
44
+ - cosine_precision@3
45
+ - cosine_precision@5
46
+ - cosine_precision@10
47
+ - cosine_recall@1
48
+ - cosine_recall@3
49
+ - cosine_recall@5
50
+ - cosine_recall@10
51
+ - cosine_ndcg@10
52
+ - cosine_mrr@10
53
+ - cosine_map@100
54
+ model-index:
55
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
56
+ results:
57
+ - task:
58
+ type: information-retrieval
59
+ name: Information Retrieval
60
+ dataset:
61
+ name: Unknown
62
+ type: unknown
63
+ metrics:
64
+ - type: cosine_accuracy@1
65
+ value: 0.9137931034482759
66
+ name: Cosine Accuracy@1
67
+ - type: cosine_accuracy@3
68
+ value: 0.9741379310344828
69
+ name: Cosine Accuracy@3
70
+ - type: cosine_accuracy@5
71
+ value: 0.9913793103448276
72
+ name: Cosine Accuracy@5
73
+ - type: cosine_accuracy@10
74
+ value: 1.0
75
+ name: Cosine Accuracy@10
76
+ - type: cosine_precision@1
77
+ value: 0.9137931034482759
78
+ name: Cosine Precision@1
79
+ - type: cosine_precision@3
80
+ value: 0.32471264367816094
81
+ name: Cosine Precision@3
82
+ - type: cosine_precision@5
83
+ value: 0.19827586206896552
84
+ name: Cosine Precision@5
85
+ - type: cosine_precision@10
86
+ value: 0.09999999999999999
87
+ name: Cosine Precision@10
88
+ - type: cosine_recall@1
89
+ value: 0.9137931034482759
90
+ name: Cosine Recall@1
91
+ - type: cosine_recall@3
92
+ value: 0.9741379310344828
93
+ name: Cosine Recall@3
94
+ - type: cosine_recall@5
95
+ value: 0.9913793103448276
96
+ name: Cosine Recall@5
97
+ - type: cosine_recall@10
98
+ value: 1.0
99
+ name: Cosine Recall@10
100
+ - type: cosine_ndcg@10
101
+ value: 0.9608827285720798
102
+ name: Cosine Ndcg@10
103
+ - type: cosine_mrr@10
104
+ value: 0.9479166666666667
105
+ name: Cosine Mrr@10
106
+ - type: cosine_map@100
107
+ value: 0.9479166666666666
108
+ name: Cosine Map@100
109
+ ---
110
+
111
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
112
+
113
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
114
+
115
+ ## Model Details
116
+
117
+ ### Model Description
118
+ - **Model Type:** Sentence Transformer
119
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision c004d8e3e901237d8fa7e9fff12774962e391ce5 -->
120
+ - **Maximum Sequence Length:** 128 tokens
121
+ - **Output Dimensionality:** 384 dimensions
122
+ - **Similarity Function:** Cosine Similarity
123
+ <!-- - **Training Dataset:** Unknown -->
124
+ <!-- - **Language:** Unknown -->
125
+ <!-- - **License:** Unknown -->
126
+
127
+ ### Model Sources
128
+
129
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
130
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
131
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
132
+
133
+ ### Full Model Architecture
134
+
135
+ ```
136
+ SentenceTransformer(
137
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
138
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
139
+ (2): Normalize()
140
+ )
141
+ ```
142
+
143
+ ## Usage
144
+
145
+ ### Direct Usage (Sentence Transformers)
146
+
147
+ First install the Sentence Transformers library:
148
+
149
+ ```bash
150
+ pip install -U sentence-transformers
151
+ ```
152
+
153
+ Then you can load this model and run inference.
154
+ ```python
155
+ from sentence_transformers import SentenceTransformer
156
+
157
+ # Download from the 🤗 Hub
158
+ model = SentenceTransformer("sentence_transformers_model_id")
159
+ # Run inference
160
+ sentences = [
161
+ 'coordenador(a) sist. automação conteúdo i',
162
+ 'coordenador',
163
+ 'júnior',
164
+ ]
165
+ embeddings = model.encode(sentences)
166
+ print(embeddings.shape)
167
+ # [3, 384]
168
+
169
+ # Get the similarity scores for the embeddings
170
+ similarities = model.similarity(embeddings, embeddings)
171
+ print(similarities.shape)
172
+ # [3, 3]
173
+ ```
174
+
175
+ <!--
176
+ ### Direct Usage (Transformers)
177
+
178
+ <details><summary>Click to see the direct usage in Transformers</summary>
179
+
180
+ </details>
181
+ -->
182
+
183
+ <!--
184
+ ### Downstream Usage (Sentence Transformers)
185
+
186
+ You can finetune this model on your own dataset.
187
+
188
+ <details><summary>Click to expand</summary>
189
+
190
+ </details>
191
+ -->
192
+
193
+ <!--
194
+ ### Out-of-Scope Use
195
+
196
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
197
+ -->
198
+
199
+ ## Evaluation
200
+
201
+ ### Metrics
202
+
203
+ #### Information Retrieval
204
+
205
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
206
+
207
+ | Metric | Value |
208
+ |:--------------------|:-----------|
209
+ | cosine_accuracy@1 | 0.9138 |
210
+ | cosine_accuracy@3 | 0.9741 |
211
+ | cosine_accuracy@5 | 0.9914 |
212
+ | cosine_accuracy@10 | 1.0 |
213
+ | cosine_precision@1 | 0.9138 |
214
+ | cosine_precision@3 | 0.3247 |
215
+ | cosine_precision@5 | 0.1983 |
216
+ | cosine_precision@10 | 0.1 |
217
+ | cosine_recall@1 | 0.9138 |
218
+ | cosine_recall@3 | 0.9741 |
219
+ | cosine_recall@5 | 0.9914 |
220
+ | cosine_recall@10 | 1.0 |
221
+ | **cosine_ndcg@10** | **0.9609** |
222
+ | cosine_mrr@10 | 0.9479 |
223
+ | cosine_map@100 | 0.9479 |
224
+
225
+ <!--
226
+ ## Bias, Risks and Limitations
227
+
228
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
229
+ -->
230
+
231
+ <!--
232
+ ### Recommendations
233
+
234
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
235
+ -->
236
+
237
+ ## Training Details
238
+
239
+ ### Training Dataset
240
+
241
+ #### Unnamed Dataset
242
+
243
+
244
+ * Size: 464 training samples
245
+ * Columns: <code>input</code> and <code>output</code>
246
+ * Approximate statistics based on the first 464 samples:
247
+ | | input | output |
248
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
249
+ | type | string | string |
250
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.32 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.3 tokens</li><li>max: 8 tokens</li></ul> |
251
+ * Samples:
252
+ | input | output |
253
+ |:----------------------------------|:------------------------|
254
+ | <code>(l2) pleno</code> | <code>pleno</code> |
255
+ | <code>analista contabil sr</code> | <code>sênior</code> |
256
+ | <code>estagiario</code> | <code>estagiário</code> |
257
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
258
+ ```json
259
+ {
260
+ "scale": 20.0,
261
+ "similarity_fct": "cos_sim"
262
+ }
263
+ ```
264
+
265
+ ### Evaluation Dataset
266
+
267
+ #### Unnamed Dataset
268
+
269
+
270
+ * Size: 116 evaluation samples
271
+ * Columns: <code>input</code> and <code>output</code>
272
+ * Approximate statistics based on the first 116 samples:
273
+ | | input | output |
274
+ |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
275
+ | type | string | string |
276
+ | details | <ul><li>min: 3 tokens</li><li>mean: 6.67 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.28 tokens</li><li>max: 8 tokens</li></ul> |
277
+ * Samples:
278
+ | input | output |
279
+ |:-----------------------------------|:------------------------|
280
+ | <code>pleno 2</code> | <code>pleno</code> |
281
+ | <code>analista adm senior i</code> | <code>sênior</code> |
282
+ | <code>assistente i</code> | <code>assistente</code> |
283
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
284
+ ```json
285
+ {
286
+ "scale": 20.0,
287
+ "similarity_fct": "cos_sim"
288
+ }
289
+ ```
290
+
291
+ ### Training Hyperparameters
292
+ #### Non-Default Hyperparameters
293
+
294
+ - `eval_strategy`: steps
295
+ - `learning_rate`: 0.0001
296
+ - `num_train_epochs`: 4
297
+ - `warmup_ratio`: 0.1
298
+ - `load_best_model_at_end`: True
299
+ - `batch_sampler`: no_duplicates
300
+
301
+ #### All Hyperparameters
302
+ <details><summary>Click to expand</summary>
303
+
304
+ - `overwrite_output_dir`: False
305
+ - `do_predict`: False
306
+ - `eval_strategy`: steps
307
+ - `prediction_loss_only`: True
308
+ - `per_device_train_batch_size`: 8
309
+ - `per_device_eval_batch_size`: 8
310
+ - `per_gpu_train_batch_size`: None
311
+ - `per_gpu_eval_batch_size`: None
312
+ - `gradient_accumulation_steps`: 1
313
+ - `eval_accumulation_steps`: None
314
+ - `torch_empty_cache_steps`: None
315
+ - `learning_rate`: 0.0001
316
+ - `weight_decay`: 0.0
317
+ - `adam_beta1`: 0.9
318
+ - `adam_beta2`: 0.999
319
+ - `adam_epsilon`: 1e-08
320
+ - `max_grad_norm`: 1.0
321
+ - `num_train_epochs`: 4
322
+ - `max_steps`: -1
323
+ - `lr_scheduler_type`: linear
324
+ - `lr_scheduler_kwargs`: {}
325
+ - `warmup_ratio`: 0.1
326
+ - `warmup_steps`: 0
327
+ - `log_level`: passive
328
+ - `log_level_replica`: warning
329
+ - `log_on_each_node`: True
330
+ - `logging_nan_inf_filter`: True
331
+ - `save_safetensors`: True
332
+ - `save_on_each_node`: False
333
+ - `save_only_model`: False
334
+ - `restore_callback_states_from_checkpoint`: False
335
+ - `no_cuda`: False
336
+ - `use_cpu`: False
337
+ - `use_mps_device`: False
338
+ - `seed`: 42
339
+ - `data_seed`: None
340
+ - `jit_mode_eval`: False
341
+ - `use_ipex`: False
342
+ - `bf16`: False
343
+ - `fp16`: False
344
+ - `fp16_opt_level`: O1
345
+ - `half_precision_backend`: auto
346
+ - `bf16_full_eval`: False
347
+ - `fp16_full_eval`: False
348
+ - `tf32`: None
349
+ - `local_rank`: 0
350
+ - `ddp_backend`: None
351
+ - `tpu_num_cores`: None
352
+ - `tpu_metrics_debug`: False
353
+ - `debug`: []
354
+ - `dataloader_drop_last`: False
355
+ - `dataloader_num_workers`: 0
356
+ - `dataloader_prefetch_factor`: None
357
+ - `past_index`: -1
358
+ - `disable_tqdm`: False
359
+ - `remove_unused_columns`: True
360
+ - `label_names`: None
361
+ - `load_best_model_at_end`: True
362
+ - `ignore_data_skip`: False
363
+ - `fsdp`: []
364
+ - `fsdp_min_num_params`: 0
365
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
366
+ - `fsdp_transformer_layer_cls_to_wrap`: None
367
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
368
+ - `deepspeed`: None
369
+ - `label_smoothing_factor`: 0.0
370
+ - `optim`: adamw_torch
371
+ - `optim_args`: None
372
+ - `adafactor`: False
373
+ - `group_by_length`: False
374
+ - `length_column_name`: length
375
+ - `ddp_find_unused_parameters`: None
376
+ - `ddp_bucket_cap_mb`: None
377
+ - `ddp_broadcast_buffers`: False
378
+ - `dataloader_pin_memory`: True
379
+ - `dataloader_persistent_workers`: False
380
+ - `skip_memory_metrics`: True
381
+ - `use_legacy_prediction_loop`: False
382
+ - `push_to_hub`: False
383
+ - `resume_from_checkpoint`: None
384
+ - `hub_model_id`: None
385
+ - `hub_strategy`: every_save
386
+ - `hub_private_repo`: None
387
+ - `hub_always_push`: False
388
+ - `gradient_checkpointing`: False
389
+ - `gradient_checkpointing_kwargs`: None
390
+ - `include_inputs_for_metrics`: False
391
+ - `include_for_metrics`: []
392
+ - `eval_do_concat_batches`: True
393
+ - `fp16_backend`: auto
394
+ - `push_to_hub_model_id`: None
395
+ - `push_to_hub_organization`: None
396
+ - `mp_parameters`:
397
+ - `auto_find_batch_size`: False
398
+ - `full_determinism`: False
399
+ - `torchdynamo`: None
400
+ - `ray_scope`: last
401
+ - `ddp_timeout`: 1800
402
+ - `torch_compile`: False
403
+ - `torch_compile_backend`: None
404
+ - `torch_compile_mode`: None
405
+ - `dispatch_batches`: None
406
+ - `split_batches`: None
407
+ - `include_tokens_per_second`: False
408
+ - `include_num_input_tokens_seen`: False
409
+ - `neftune_noise_alpha`: None
410
+ - `optim_target_modules`: None
411
+ - `batch_eval_metrics`: False
412
+ - `eval_on_start`: False
413
+ - `use_liger_kernel`: False
414
+ - `eval_use_gather_object`: False
415
+ - `average_tokens_across_devices`: False
416
+ - `prompts`: None
417
+ - `batch_sampler`: no_duplicates
418
+ - `multi_dataset_batch_sampler`: proportional
419
+
420
+ </details>
421
+
422
+ ### Training Logs
423
+ | Epoch | Step | Validation Loss | cosine_ndcg@10 |
424
+ |:----------:|:-------:|:---------------:|:--------------:|
425
+ | 0 | 0 | - | 0.6834 |
426
+ | **3.4483** | **200** | **0.1355** | **0.9609** |
427
+ | 4.0 | 232 | - | 0.9609 |
428
+
429
+ * The bold row denotes the saved checkpoint.
430
+
431
+ ### Framework Versions
432
+ - Python: 3.11.0
433
+ - Sentence Transformers: 3.3.1
434
+ - Transformers: 4.49.0
435
+ - PyTorch: 2.2.2
436
+ - Accelerate: 1.1.1
437
+ - Datasets: 3.1.0
438
+ - Tokenizers: 0.21.0
439
+
440
+ ## Citation
441
+
442
+ ### BibTeX
443
+
444
+ #### Sentence Transformers
445
+ ```bibtex
446
+ @inproceedings{reimers-2019-sentence-bert,
447
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
448
+ author = "Reimers, Nils and Gurevych, Iryna",
449
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
450
+ month = "11",
451
+ year = "2019",
452
+ publisher = "Association for Computational Linguistics",
453
+ url = "https://arxiv.org/abs/1908.10084",
454
+ }
455
+ ```
456
+
457
+ #### MultipleNegativesRankingLoss
458
+ ```bibtex
459
+ @misc{henderson2017efficient,
460
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
461
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
462
+ year={2017},
463
+ eprint={1705.00652},
464
+ archivePrefix={arXiv},
465
+ primaryClass={cs.CL}
466
+ }
467
+ ```
468
+
469
+ <!--
470
+ ## Glossary
471
+
472
+ *Clearly define terms in order to be accessible across audiences.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Authors
477
+
478
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Contact
483
+
484
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
485
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.2.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80532743adeecb7474a80a47d50b8aa414da9f431c62aac1562a9848b35e22a6
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e47eae2ec6600e3e6967803ef6ee4e47b6f50521a7244d7eeec1210405b5779
3
+ size 5624
vocab.txt ADDED
The diff for this file is too large to render. See raw diff