--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: Appearance-classifier-with-ratings results: [] --- # Appearance-classifier-with-ratings This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5312 - Accuracy: 0.4029 - Recall: 0.4029 - Precision: 0.4029 - F1: 0.4029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.4455 | 1.0 | 5000 | 1.4442 | 0.3914 | 0.3914 | 0.3914 | 0.3914 | | 1.3156 | 2.0 | 10000 | 1.4637 | 0.3976 | 0.3976 | 0.3976 | 0.3976 | | 1.1218 | 3.0 | 15000 | 1.5312 | 0.4029 | 0.4029 | 0.4029 | 0.4029 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2