File size: 1,767 Bytes
03bb018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e4958
03bb018
61e4958
 
 
 
 
03bb018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e4958
 
 
 
 
03bb018
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: Palate-classifier-with-ratings
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Palate-classifier-with-ratings

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5897
- Accuracy: 0.4006
- Recall: 0.4006
- Precision: 0.4006
- F1: 0.4006

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Recall | Precision | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.4528        | 1.0   | 5000  | 1.4438          | 0.3867   | 0.3867 | 0.3867    | 0.3867 |
| 1.2881        | 2.0   | 10000 | 1.4323          | 0.4071   | 0.4071 | 0.4071    | 0.4071 |
| 0.993         | 3.0   | 15000 | 1.5897          | 0.4006   | 0.4006 | 0.4006    | 0.4006 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2