File size: 1,740 Bytes
f3ad3c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f4927
b52e6f2
 
f3ad3c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f4927
f3ad3c3
 
 
 
 
 
b52e6f2
 
 
 
 
f3ad3c3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: transformers
license: apache-2.0
base_model: T5-small
tags:
- generated_from_trainer
model-index:
- name: T5-OM
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5-OM

This model is a fine-tuned version of [T5-small](https://huggingface.co/T5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0076
- Quadruple Accuracy: 0.2846

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Quadruple Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|
| 0.0553        | 1.0   | 468  | 0.0204          | 0.0030             |
| 0.0145        | 2.0   | 936  | 0.0101          | 0.2372             |
| 0.0202        | 3.0   | 1404 | 0.0083          | 0.2283             |
| 0.0142        | 4.0   | 1872 | 0.0077          | 0.2628             |
| 0.0135        | 5.0   | 2340 | 0.0076          | 0.2846             |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0