File size: 897 Bytes
957cd6d
 
 
 
513e1a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
957cd6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
datasets:
- leonvanbokhorst/topic-drift
---

# Topic Drift Detector Model

## Version: v20241225_085248

This model detects topic drift in conversations using an enhanced attention-based architecture.

## Model Architecture
- Multi-head attention mechanism
- Bidirectional LSTM for pattern detection
- Dynamic weight generation
- Semantic bridge detection

## Performance Metrics
```txt
=== Full Training Results ===
Best Validation RMSE: 0.0107
Best Validation R²: 0.8867

=== Test Set Results ===
Loss: 0.0002
RMSE: 0.0129
R²: 0.8373

```

## Training Curves
![Training Curves](plots/v20241225_085248/training_curves.png)

## Usage
```python
import torch

# Load model
model = torch.load('models/v20241225_085248/topic_drift_model.pt')

# Use model for inference
# Input shape: [batch_size, sequence_length * embedding_dim]
# Output shape: [batch_size, 1] (drift score between 0 and 1)
```