--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 4fa119d1-7bbe-49d4-8ec0-513a98e28506 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1c091c2ebb997483_train_data.json ds_type: json format: custom path: /workspace/input_data/1c091c2ebb997483_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso05/4fa119d1-7bbe-49d4-8ec0-513a98e28506 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000205 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2000 micro_batch_size: 4 mlflow_experiment_name: /tmp/1c091c2ebb997483_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 50 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 84fe75ff-68ca-47c0-8ffd-19bf54a4bc01 wandb_project: 05a wandb_run: your_name wandb_runid: 84fe75ff-68ca-47c0-8ffd-19bf54a4bc01 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ```

# 4fa119d1-7bbe-49d4-8ec0-513a98e28506 This model is a fine-tuned version of [unsloth/SmolLM-1.7B](https://huggingface.co/unsloth/SmolLM-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000205 - train_batch_size: 4 - eval_batch_size: 4 - seed: 50 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0014 | 1 | 1.1905 | | 0.7381 | 0.6981 | 500 | 0.7389 | | 0.6378 | 1.3962 | 1000 | 0.7117 | | 0.5424 | 2.0942 | 1500 | 0.7270 | | 0.5481 | 2.7923 | 2000 | 0.7065 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1