--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-64k tags: - axolotl - generated_from_trainer model-index: - name: 5d060a25-63b3-4897-a574-bfe425cee4f1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c7e5ee93dd6670d0_train_data.json ds_type: json format: custom path: /workspace/input_data/c7e5ee93dd6670d0_train_data.json type: field_input: candidates field_instruction: clean_html field_output: action format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 100 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso16/5d060a25-63b3-4897-a574-bfe425cee4f1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000216 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 800 micro_batch_size: 4 mlflow_experiment_name: /tmp/c7e5ee93dd6670d0_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 saves_per_epoch: null seed: 160 sequence_len: 1024 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b8113f60-4278-4105-ba6c-5ae6ade04418 wandb_project: 16a wandb_run: your_name wandb_runid: b8113f60-4278-4105-ba6c-5ae6ade04418 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ```

# 5d060a25-63b3-4897-a574-bfe425cee4f1 This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000216 - train_batch_size: 4 - eval_batch_size: 4 - seed: 160 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 800 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.6883 | | 7.9607 | 0.0585 | 100 | 1.9136 | | 8.0883 | 0.1170 | 200 | 2.3437 | | 8.2199 | 0.1755 | 300 | 1.8582 | | 8.1803 | 0.2340 | 400 | 1.9359 | | 7.7182 | 0.2925 | 500 | 1.3590 | | 7.0506 | 0.3510 | 600 | 1.2712 | | 7.0963 | 0.4095 | 700 | 0.8595 | | 6.7265 | 0.4680 | 800 | 0.8362 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1