--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_model_ results: [] --- # my_model_ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0661 - Precision: 0.9465 - Recall: 0.9687 - F1: 0.9574 - Accuracy: 0.9847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 233 | 0.0729 | 0.9346 | 0.9642 | 0.9492 | 0.9826 | | No log | 2.0 | 466 | 0.0669 | 0.9442 | 0.9696 | 0.9567 | 0.9844 | | 0.1286 | 3.0 | 699 | 0.0661 | 0.9465 | 0.9687 | 0.9574 | 0.9847 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1