lia21 commited on
Commit
2e3890e
·
verified ·
1 Parent(s): 51da8e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +141 -415
README.md CHANGED
@@ -1,20 +1,25 @@
1
  ---
2
  tags:
3
- - generated_from_trainer
 
 
 
 
4
  license: mit
5
  datasets:
6
- - HuggingFaceH4/ultrachat_200k
7
- - HuggingFaceH4/ultrafeedback_binarized
8
  language:
9
- - en
10
  base_model: mistralai/Mistral-7B-v0.1
 
11
  widget:
12
  - example_title: Pirate!
13
  messages:
14
  - role: system
15
  content: You are a pirate chatbot who always responds with Arr!
16
  - role: user
17
- content: "There's a llama on my lawn, how can I get rid of him?"
18
  output:
19
  text: >-
20
  Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare
@@ -23,422 +28,143 @@ widget:
23
  promise of a tasty treat. Once he's gone, ye can clean up yer lawn and
24
  enjoy the peace and quiet once again. But beware, me hearty, for there
25
  may be more llamas where that one came from! Arr!
26
- pipeline_tag: text-generation
27
  model-index:
28
- - name: zephyr-7b-beta
29
- results:
30
- # AI2 Reasoning Challenge (25-Shot)
31
- - task:
32
- type: text-generation
33
- name: Text Generation
34
- dataset:
35
- name: AI2 Reasoning Challenge (25-Shot)
36
- type: ai2_arc
37
- config: ARC-Challenge
38
- split: test
39
- args:
40
- num_few_shot: 25
41
- metrics:
42
- - type: acc_norm
43
- name: normalized accuracy
44
- value: 62.03071672354948
45
- source:
46
- name: Open LLM Leaderboard
47
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
48
-
49
- # HellaSwag (10-shot)
50
- - task:
51
- type: text-generation
52
- name: Text Generation
53
- dataset:
54
- name: HellaSwag (10-Shot)
55
- type: hellaswag
56
- split: validation
57
- args:
58
- num_few_shot: 10
59
- metrics:
60
- - type: acc_norm
61
- name: normalized accuracy
62
- value: 84.35570603465445
63
- source:
64
- name: Open LLM Leaderboard
65
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
66
-
67
- # DROP (3-shot)
68
- - task:
69
- type: text-generation
70
- name: Text Generation
71
- dataset:
72
- name: Drop (3-Shot)
73
- type: drop
74
- split: validation
75
- args:
76
- num_few_shot: 3
77
- metrics:
78
- - type: f1
79
- name: f1 score
80
- value: 9.662437080536909
81
- source:
82
- name: Open LLM Leaderboard
83
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
84
-
85
- # TruthfulQA (0-shot)
86
- - task:
87
- type: text-generation
88
- name: Text Generation
89
- dataset:
90
- name: TruthfulQA (0-shot)
91
- type: truthful_qa
92
- config: multiple_choice
93
- split: validation
94
- args:
95
- num_few_shot: 0
96
- metrics:
97
- - type: mc2
98
- value: 57.44916942762855
99
- source:
100
- name: Open LLM Leaderboard
101
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
102
-
103
- # GSM8k (5-shot)
104
- - task:
105
- type: text-generation
106
- name: Text Generation
107
- dataset:
108
- name: GSM8k (5-shot)
109
- type: gsm8k
110
- config: main
111
- split: test
112
- args:
113
- num_few_shot: 5
114
- metrics:
115
- - type: acc
116
- name: accuracy
117
- value: 12.736921910538287
118
- source:
119
- name: Open LLM Leaderboard
120
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
121
-
122
- # MMLU (5-Shot)
123
- - task:
124
- type: text-generation
125
- name: Text Generation
126
- dataset:
127
- name: MMLU (5-Shot)
128
- type: cais/mmlu
129
- config: all
130
- split: test
131
- args:
132
- num_few_shot: 5
133
- metrics:
134
- - type: acc
135
- name: accuracy
136
- value: 61.07
137
- source:
138
- name: Open LLM Leaderboard
139
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
140
-
141
- # Winogrande (5-shot)
142
- - task:
143
- type: text-generation
144
- name: Text Generation
145
- dataset:
146
- name: Winogrande (5-shot)
147
- type: winogrande
148
- config: winogrande_xl
149
- split: validation
150
- args:
151
- num_few_shot: 5
152
- metrics:
153
- - type: acc
154
- name: accuracy
155
- value: 77.74269928966061
156
- source:
157
- name: Open LLM Leaderboard
158
- url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HuggingFaceH4/zephyr-7b-beta
159
-
160
- # AlpacaEval (taken from model card)
161
- - task:
162
- type: text-generation
163
- name: Text Generation
164
- dataset:
165
- name: AlpacaEval
166
- type: tatsu-lab/alpaca_eval
167
- metrics:
168
- - type: unknown
169
- name: win rate
170
- value: 0.9060
171
- source:
172
- url: https://tatsu-lab.github.io/alpaca_eval/
173
-
174
- # MT-Bench (taken from model card)
175
- - task:
176
- type: text-generation
177
- name: Text Generation
178
- dataset:
179
- name: MT-Bench
180
- type: unknown
181
- metrics:
182
- - type: unknown
183
- name: score
184
- value: 7.34
185
- source:
186
- url: https://huggingface.co/spaces/lmsys/mt-bench
187
  ---
188
 
189
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
190
- should probably proofread and complete it, then remove this comment. -->
191
-
192
- <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
193
-
194
-
195
- # Model Card for Zephyr 7B β
196
-
197
- Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-β is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so. You can find more details in the [technical report](https://arxiv.org/abs/2310.16944).
198
-
199
-
200
- ## Model description
201
-
202
- - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
203
- - **Language(s) (NLP):** Primarily English
204
- - **License:** MIT
205
- - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
206
-
207
- ### Model Sources
208
-
209
- <!-- Provide the basic links for the model. -->
210
-
211
- - **Repository:** https://github.com/huggingface/alignment-handbook
212
- - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
213
- - **Chatbot Arena:** Evaluate Zephyr 7B against 10+ LLMs in the LMSYS arena: http://arena.lmsys.org
214
-
215
- ## Performance
216
-
217
- At the time of release, Zephyr-7B-β is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:
218
-
219
- | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
220
- |-------------|-----|----|---------------|--------------|
221
- | StableLM-Tuned-α | 7B| dSFT |2.75| -|
222
- | MPT-Chat | 7B |dSFT |5.42| -|
223
- | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
224
- | Mistral-Instructv0.1 | 7B| - | 6.84 |-|
225
- | Zephyr-7b-α |7B| dDPO| 6.88| -|
226
- | **Zephyr-7b-β** 🪁 | **7B** | **dDPO** | **7.34** | **90.60** |
227
- | Falcon-Instruct | 40B |dSFT |5.17 |45.71|
228
- | Guanaco | 65B | SFT |6.41| 71.80|
229
- | Llama2-Chat | 70B |RLHF |6.86| 92.66|
230
- | Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
231
- | WizardLM v1.0 | 70B |dSFT |7.71 |-|
232
- | Xwin-LM v0.1 | 70B |dPPO |- |95.57|
233
- | GPT-3.5-turbo | - |RLHF |7.94 |89.37|
234
- | Claude 2 | - |RLHF |8.06| 91.36|
235
- | GPT-4 | -| RLHF |8.99| 95.28|
236
-
237
- In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:
238
-
239
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png)
240
-
241
- However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.
242
-
243
-
244
- ## Intended uses & limitations
245
 
246
- The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
247
- We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
248
 
249
- You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)
250
-
251
- Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
 
252
 
 
253
  ```python
254
- # Install transformers from source - only needed for versions <= v4.34
255
- # pip install git+https://github.com/huggingface/transformers.git
256
- # pip install accelerate
257
-
258
- import torch
259
- from transformers import pipeline
260
-
261
- pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
262
-
263
- # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
264
- messages = [
265
- {
266
- "role": "system",
267
- "content": "You are a friendly chatbot who always responds in the style of a pirate",
268
- },
269
- {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
270
- ]
271
- prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
272
- outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
273
- print(outputs[0]["generated_text"])
274
- # <|system|>
275
- # You are a friendly chatbot who always responds in the style of a pirate.</s>
276
- # <|user|>
277
- # How many helicopters can a human eat in one sitting?</s>
278
- # <|assistant|>
279
- # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
280
- ```
281
-
282
- ## Bias, Risks, and Limitations
283
-
284
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
285
-
286
- Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
287
- It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
288
-
289
-
290
- ## Training and evaluation data
291
-
292
- During DPO training, this model achieves the following results on the evaluation set:
293
-
294
- - Loss: 0.7496
295
- - Rewards/chosen: -4.5221
296
- - Rewards/rejected: -8.3184
297
- - Rewards/accuracies: 0.7812
298
- - Rewards/margins: 3.7963
299
- - Logps/rejected: -340.1541
300
- - Logps/chosen: -299.4561
301
- - Logits/rejected: -2.3081
302
- - Logits/chosen: -2.3531
303
-
304
-
305
- ### Training hyperparameters
306
-
307
- The following hyperparameters were used during training:
308
- - learning_rate: 5e-07
309
- - train_batch_size: 2
310
- - eval_batch_size: 4
311
- - seed: 42
312
- - distributed_type: multi-GPU
313
- - num_devices: 16
314
- - total_train_batch_size: 32
315
- - total_eval_batch_size: 64
316
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
317
- - lr_scheduler_type: linear
318
- - lr_scheduler_warmup_ratio: 0.1
319
- - num_epochs: 3.0
320
-
321
- ### Training results
322
-
323
- The table below shows the full set of DPO training metrics:
324
-
325
-
326
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
327
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
328
- | 0.6284 | 0.05 | 100 | 0.6098 | 0.0425 | -0.1872 | 0.7344 | 0.2297 | -258.8416 | -253.8099 | -2.7976 | -2.8234 |
329
- | 0.4908 | 0.1 | 200 | 0.5426 | -0.0279 | -0.6842 | 0.75 | 0.6563 | -263.8124 | -254.5145 | -2.7719 | -2.7960 |
330
- | 0.5264 | 0.15 | 300 | 0.5324 | 0.0414 | -0.9793 | 0.7656 | 1.0207 | -266.7627 | -253.8209 | -2.7892 | -2.8122 |
331
- | 0.5536 | 0.21 | 400 | 0.4957 | -0.0185 | -1.5276 | 0.7969 | 1.5091 | -272.2460 | -254.4203 | -2.8542 | -2.8764 |
332
- | 0.5362 | 0.26 | 500 | 0.5031 | -0.2630 | -1.5917 | 0.7812 | 1.3287 | -272.8869 | -256.8653 | -2.8702 | -2.8958 |
333
- | 0.5966 | 0.31 | 600 | 0.5963 | -0.2993 | -1.6491 | 0.7812 | 1.3499 | -273.4614 | -257.2279 | -2.8778 | -2.8986 |
334
- | 0.5014 | 0.36 | 700 | 0.5382 | -0.2859 | -1.4750 | 0.75 | 1.1891 | -271.7204 | -257.0942 | -2.7659 | -2.7869 |
335
- | 0.5334 | 0.41 | 800 | 0.5677 | -0.4289 | -1.8968 | 0.7969 | 1.4679 | -275.9378 | -258.5242 | -2.7053 | -2.7265 |
336
- | 0.5251 | 0.46 | 900 | 0.5772 | -0.2116 | -1.3107 | 0.7344 | 1.0991 | -270.0768 | -256.3507 | -2.8463 | -2.8662 |
337
- | 0.5205 | 0.52 | 1000 | 0.5262 | -0.3792 | -1.8585 | 0.7188 | 1.4793 | -275.5552 | -258.0276 | -2.7893 | -2.7979 |
338
- | 0.5094 | 0.57 | 1100 | 0.5433 | -0.6279 | -1.9368 | 0.7969 | 1.3089 | -276.3377 | -260.5136 | -2.7453 | -2.7536 |
339
- | 0.5837 | 0.62 | 1200 | 0.5349 | -0.3780 | -1.9584 | 0.7656 | 1.5804 | -276.5542 | -258.0154 | -2.7643 | -2.7756 |
340
- | 0.5214 | 0.67 | 1300 | 0.5732 | -1.0055 | -2.2306 | 0.7656 | 1.2251 | -279.2761 | -264.2903 | -2.6986 | -2.7113 |
341
- | 0.6914 | 0.72 | 1400 | 0.5137 | -0.6912 | -2.1775 | 0.7969 | 1.4863 | -278.7448 | -261.1467 | -2.7166 | -2.7275 |
342
- | 0.4655 | 0.77 | 1500 | 0.5090 | -0.7987 | -2.2930 | 0.7031 | 1.4943 | -279.8999 | -262.2220 | -2.6651 | -2.6838 |
343
- | 0.5731 | 0.83 | 1600 | 0.5312 | -0.8253 | -2.3520 | 0.7812 | 1.5268 | -280.4902 | -262.4876 | -2.6543 | -2.6728 |
344
- | 0.5233 | 0.88 | 1700 | 0.5206 | -0.4573 | -2.0951 | 0.7812 | 1.6377 | -277.9205 | -258.8084 | -2.6870 | -2.7097 |
345
- | 0.5593 | 0.93 | 1800 | 0.5231 | -0.5508 | -2.2000 | 0.7969 | 1.6492 | -278.9703 | -259.7433 | -2.6221 | -2.6519 |
346
- | 0.4967 | 0.98 | 1900 | 0.5290 | -0.5340 | -1.9570 | 0.8281 | 1.4230 | -276.5395 | -259.5749 | -2.6564 | -2.6878 |
347
- | 0.0921 | 1.03 | 2000 | 0.5368 | -1.1376 | -3.1615 | 0.7812 | 2.0239 | -288.5854 | -265.6111 | -2.6040 | -2.6345 |
348
- | 0.0733 | 1.08 | 2100 | 0.5453 | -1.1045 | -3.4451 | 0.7656 | 2.3406 | -291.4208 | -265.2799 | -2.6289 | -2.6595 |
349
- | 0.0972 | 1.14 | 2200 | 0.5571 | -1.6915 | -3.9823 | 0.8125 | 2.2908 | -296.7934 | -271.1505 | -2.6471 | -2.6709 |
350
- | 0.1058 | 1.19 | 2300 | 0.5789 | -1.0621 | -3.8941 | 0.7969 | 2.8319 | -295.9106 | -264.8563 | -2.5527 | -2.5798 |
351
- | 0.2423 | 1.24 | 2400 | 0.5455 | -1.1963 | -3.5590 | 0.7812 | 2.3627 | -292.5599 | -266.1981 | -2.5414 | -2.5784 |
352
- | 0.1177 | 1.29 | 2500 | 0.5889 | -1.8141 | -4.3942 | 0.7969 | 2.5801 | -300.9120 | -272.3761 | -2.4802 | -2.5189 |
353
- | 0.1213 | 1.34 | 2600 | 0.5683 | -1.4608 | -3.8420 | 0.8125 | 2.3812 | -295.3901 | -268.8436 | -2.4774 | -2.5207 |
354
- | 0.0889 | 1.39 | 2700 | 0.5890 | -1.6007 | -3.7337 | 0.7812 | 2.1330 | -294.3068 | -270.2423 | -2.4123 | -2.4522 |
355
- | 0.0995 | 1.45 | 2800 | 0.6073 | -1.5519 | -3.8362 | 0.8281 | 2.2843 | -295.3315 | -269.7538 | -2.4685 | -2.5050 |
356
- | 0.1145 | 1.5 | 2900 | 0.5790 | -1.7939 | -4.2876 | 0.8438 | 2.4937 | -299.8461 | -272.1744 | -2.4272 | -2.4674 |
357
- | 0.0644 | 1.55 | 3000 | 0.5735 | -1.7285 | -4.2051 | 0.8125 | 2.4766 | -299.0209 | -271.5201 | -2.4193 | -2.4574 |
358
- | 0.0798 | 1.6 | 3100 | 0.5537 | -1.7226 | -4.2850 | 0.8438 | 2.5624 | -299.8200 | -271.4610 | -2.5367 | -2.5696 |
359
- | 0.1013 | 1.65 | 3200 | 0.5575 | -1.5715 | -3.9813 | 0.875 | 2.4098 | -296.7825 | -269.9498 | -2.4926 | -2.5267 |
360
- | 0.1254 | 1.7 | 3300 | 0.5905 | -1.6412 | -4.4703 | 0.8594 | 2.8291 | -301.6730 | -270.6473 | -2.5017 | -2.5340 |
361
- | 0.085 | 1.76 | 3400 | 0.6133 | -1.9159 | -4.6760 | 0.8438 | 2.7601 | -303.7296 | -273.3941 | -2.4614 | -2.4960 |
362
- | 0.065 | 1.81 | 3500 | 0.6074 | -1.8237 | -4.3525 | 0.8594 | 2.5288 | -300.4951 | -272.4724 | -2.4597 | -2.5004 |
363
- | 0.0755 | 1.86 | 3600 | 0.5836 | -1.9252 | -4.4005 | 0.8125 | 2.4753 | -300.9748 | -273.4872 | -2.4327 | -2.4716 |
364
- | 0.0746 | 1.91 | 3700 | 0.5789 | -1.9280 | -4.4906 | 0.8125 | 2.5626 | -301.8762 | -273.5149 | -2.4686 | -2.5115 |
365
- | 0.1348 | 1.96 | 3800 | 0.6015 | -1.8658 | -4.2428 | 0.8281 | 2.3769 | -299.3976 | -272.8936 | -2.4943 | -2.5393 |
366
- | 0.0217 | 2.01 | 3900 | 0.6122 | -2.3335 | -4.9229 | 0.8281 | 2.5894 | -306.1988 | -277.5699 | -2.4841 | -2.5272 |
367
- | 0.0219 | 2.07 | 4000 | 0.6522 | -2.9890 | -6.0164 | 0.8281 | 3.0274 | -317.1334 | -284.1248 | -2.4105 | -2.4545 |
368
- | 0.0119 | 2.12 | 4100 | 0.6922 | -3.4777 | -6.6749 | 0.7969 | 3.1972 | -323.7187 | -289.0121 | -2.4272 | -2.4699 |
369
- | 0.0153 | 2.17 | 4200 | 0.6993 | -3.2406 | -6.6775 | 0.7969 | 3.4369 | -323.7453 | -286.6413 | -2.4047 | -2.4465 |
370
- | 0.011 | 2.22 | 4300 | 0.7178 | -3.7991 | -7.4397 | 0.7656 | 3.6406 | -331.3667 | -292.2260 | -2.3843 | -2.4290 |
371
- | 0.0072 | 2.27 | 4400 | 0.6840 | -3.3269 | -6.8021 | 0.8125 | 3.4752 | -324.9908 | -287.5042 | -2.4095 | -2.4536 |
372
- | 0.0197 | 2.32 | 4500 | 0.7013 | -3.6890 | -7.3014 | 0.8125 | 3.6124 | -329.9841 | -291.1250 | -2.4118 | -2.4543 |
373
- | 0.0182 | 2.37 | 4600 | 0.7476 | -3.8994 | -7.5366 | 0.8281 | 3.6372 | -332.3356 | -293.2291 | -2.4163 | -2.4565 |
374
- | 0.0125 | 2.43 | 4700 | 0.7199 | -4.0560 | -7.5765 | 0.8438 | 3.5204 | -332.7345 | -294.7952 | -2.3699 | -2.4100 |
375
- | 0.0082 | 2.48 | 4800 | 0.7048 | -3.6613 | -7.1356 | 0.875 | 3.4743 | -328.3255 | -290.8477 | -2.3925 | -2.4303 |
376
- | 0.0118 | 2.53 | 4900 | 0.6976 | -3.7908 | -7.3152 | 0.8125 | 3.5244 | -330.1224 | -292.1431 | -2.3633 | -2.4047 |
377
- | 0.0118 | 2.58 | 5000 | 0.7198 | -3.9049 | -7.5557 | 0.8281 | 3.6508 | -332.5271 | -293.2844 | -2.3764 | -2.4194 |
378
- | 0.006 | 2.63 | 5100 | 0.7506 | -4.2118 | -7.9149 | 0.8125 | 3.7032 | -336.1194 | -296.3530 | -2.3407 | -2.3860 |
379
- | 0.0143 | 2.68 | 5200 | 0.7408 | -4.2433 | -7.9802 | 0.8125 | 3.7369 | -336.7721 | -296.6682 | -2.3509 | -2.3946 |
380
- | 0.0057 | 2.74 | 5300 | 0.7552 | -4.3392 | -8.0831 | 0.7969 | 3.7439 | -337.8013 | -297.6275 | -2.3388 | -2.3842 |
381
- | 0.0138 | 2.79 | 5400 | 0.7404 | -4.2395 | -7.9762 | 0.8125 | 3.7367 | -336.7322 | -296.6304 | -2.3286 | -2.3737 |
382
- | 0.0079 | 2.84 | 5500 | 0.7525 | -4.4466 | -8.2196 | 0.7812 | 3.7731 | -339.1662 | -298.7007 | -2.3200 | -2.3641 |
383
- | 0.0077 | 2.89 | 5600 | 0.7520 | -4.5586 | -8.3485 | 0.7969 | 3.7899 | -340.4545 | -299.8206 | -2.3078 | -2.3517 |
384
- | 0.0094 | 2.94 | 5700 | 0.7527 | -4.5542 | -8.3509 | 0.7812 | 3.7967 | -340.4790 | -299.7773 | -2.3062 | -2.3510 |
385
- | 0.0054 | 2.99 | 5800 | 0.7520 | -4.5169 | -8.3079 | 0.7812 | 3.7911 | -340.0493 | -299.4038 | -2.3081 | -2.3530 |
386
-
387
-
388
- ### Framework versions
389
-
390
- - Transformers 4.35.0.dev0
391
- - Pytorch 2.0.1+cu118
392
- - Datasets 2.12.0
393
- - Tokenizers 0.14.0
394
-
395
- ## Citation
396
-
397
- If you find Zephyr-7B-β is useful in your work, please cite it with:
398
-
399
- ```
400
- @misc{tunstall2023zephyr,
401
- title={Zephyr: Direct Distillation of LM Alignment},
402
- author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
403
- year={2023},
404
- eprint={2310.16944},
405
- archivePrefix={arXiv},
406
- primaryClass={cs.LG}
407
- }
408
- ```
409
-
410
- If you use the UltraChat or UltraFeedback datasets, please cite the original works:
411
-
412
- ```
413
- @misc{ding2023enhancing,
414
- title={Enhancing Chat Language Models by Scaling High-quality Instructional Conversations},
415
- author={Ning Ding and Yulin Chen and Bokai Xu and Yujia Qin and Zhi Zheng and Shengding Hu and Zhiyuan Liu and Maosong Sun and Bowen Zhou},
416
- year={2023},
417
- eprint={2305.14233},
418
- archivePrefix={arXiv},
419
- primaryClass={cs.CL}
420
- }
421
-
422
- @misc{cui2023ultrafeedback,
423
- title={UltraFeedback: Boosting Language Models with High-quality Feedback},
424
- author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun},
425
- year={2023},
426
- eprint={2310.01377},
427
- archivePrefix={arXiv},
428
- primaryClass={cs.CL}
429
- }
430
- ```
431
 
432
- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
433
- Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HuggingFaceH4__zephyr-7b-beta)
434
 
435
- | Metric | Value |
436
- |-----------------------|---------------------------|
437
- | Avg. | 52.15 |
438
- | ARC (25-shot) | 62.03 |
439
- | HellaSwag (10-shot) | 84.36 |
440
- | MMLU (5-shot) | 61.07 |
441
- | TruthfulQA (0-shot) | 57.45 |
442
- | Winogrande (5-shot) | 77.74 |
443
- | GSM8K (5-shot) | 12.74 |
444
- | DROP (3-shot) | 9.66 |
 
1
  ---
2
  tags:
3
+ - bittensor
4
+ - subnet-20
5
+ - agent
6
+ - function-calling
7
+ - generated_from_trainer
8
  license: mit
9
  datasets:
10
+ - HuggingFaceH4/ultrachat_200k
11
+ - HuggingFaceH4/ultrafeedback_binarized
12
  language:
13
+ - en
14
  base_model: mistralai/Mistral-7B-v0.1
15
+ pipeline_tag: text-generation
16
  widget:
17
  - example_title: Pirate!
18
  messages:
19
  - role: system
20
  content: You are a pirate chatbot who always responds with Arr!
21
  - role: user
22
+ content: There's a llama on my lawn, how can I get rid of him?
23
  output:
24
  text: >-
25
  Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare
 
28
  promise of a tasty treat. Once he's gone, ye can clean up yer lawn and
29
  enjoy the peace and quiet once again. But beware, me hearty, for there
30
  may be more llamas where that one came from! Arr!
 
31
  model-index:
32
+ - name: zephyr-7b-beta
33
+ results:
34
+ - task:
35
+ type: text-generation
36
+ name: Text Generation
37
+ dataset:
38
+ name: AI2 Reasoning Challenge (25-Shot)
39
+ type: ai2_arc
40
+ config: ARC-Challenge
41
+ split: test
42
+ args:
43
+ num_few_shot: 25
44
+ metrics:
45
+ - type: acc_norm
46
+ name: normalized accuracy
47
+ value: 62.03
48
+ - task:
49
+ type: text-generation
50
+ name: Text Generation
51
+ dataset:
52
+ name: HellaSwag (10-Shot)
53
+ type: hellaswag
54
+ split: validation
55
+ args:
56
+ num_few_shot: 10
57
+ metrics:
58
+ - type: acc_norm
59
+ name: normalized accuracy
60
+ value: 84.36
61
+ - task:
62
+ type: text-generation
63
+ name: Text Generation
64
+ dataset:
65
+ name: Drop (3-Shot)
66
+ type: drop
67
+ split: validation
68
+ args:
69
+ num_few_shot: 3
70
+ metrics:
71
+ - type: f1
72
+ name: f1 score
73
+ value: 9.66
74
+ - task:
75
+ type: text-generation
76
+ name: Text Generation
77
+ dataset:
78
+ name: TruthfulQA (0-shot)
79
+ type: truthful_qa
80
+ config: multiple_choice
81
+ split: validation
82
+ args:
83
+ num_few_shot: 0
84
+ metrics:
85
+ - type: mc2
86
+ value: 57.45
87
+ - task:
88
+ type: text-generation
89
+ name: Text Generation
90
+ dataset:
91
+ name: GSM8k (5-shot)
92
+ type: gsm8k
93
+ config: main
94
+ split: test
95
+ args:
96
+ num_few_shot: 5
97
+ metrics:
98
+ - type: acc
99
+ name: accuracy
100
+ value: 12.74
101
+ - task:
102
+ type: text-generation
103
+ name: Text Generation
104
+ dataset:
105
+ name: MMLU (5-Shot)
106
+ type: cais/mmlu
107
+ config: all
108
+ split: test
109
+ args:
110
+ num_few_shot: 5
111
+ metrics:
112
+ - type: acc
113
+ name: accuracy
114
+ value: 61.07
115
+ - task:
116
+ type: text-generation
117
+ name: Text Generation
118
+ dataset:
119
+ name: Winogrande (5-shot)
120
+ type: winogrande
121
+ config: winogrande_xl
122
+ split: validation
123
+ args:
124
+ num_few_shot: 5
125
+ metrics:
126
+ - type: acc
127
+ name: accuracy
128
+ value: 77.74
129
+ - task:
130
+ type: text-generation
131
+ name: Text Generation
132
+ dataset:
133
+ name: AlpacaEval
134
+ type: tatsu-lab/alpaca_eval
135
+ metrics:
136
+ - type: unknown
137
+ name: win rate
138
+ value: 0.906
139
+ - task:
140
+ type: text-generation
141
+ name: Text Generation
142
+ dataset:
143
+ name: MT-Bench
144
+ type: unknown
145
+ metrics:
146
+ - type: unknown
147
+ name: score
148
+ value: 7.34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
  ---
150
 
151
+ # Zephyr-7B-Beta (Fine-tuned for Subnet 20 BitAgent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
+ This is a fine-tuned version of **Mistral-7B** adapted for **function-calling and reasoning tasks** in **Bittensor Subnet 20 (BitAgent)**.
 
154
 
155
+ ## 🧠 Use Case
156
+ - Works as an **agent LLM** inside the BitAgent subnet.
157
+ - Supports **reasoning** and **function-calling outputs**.
158
+ - Optimized for **task delegation and structured outputs**.
159
 
160
+ ## 🚀 How to Use
161
  ```python
162
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
+ model = AutoModelForCausalLM.from_pretrained("username/zephyr-7b-beta-bitagent")
165
+ tokenizer = AutoTokenizer.from_pretrained("username/zephyr-7b-beta-bitagent")
166
 
167
+ prompt = "Summarize the latest research in AI safety in 3 bullet points."
168
+ inputs = tokenizer(prompt, return_tensors="pt")
169
+ outputs = model.generate(**inputs, max_new_tokens=200)
170
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))