--- tags: - bittensor - subnet-20 - agent - function-calling - generated_from_trainer license: mit datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation widget: - example_title: Pirate! messages: - role: system content: You are a pirate chatbot who always responds with Arr! - role: user content: There's a llama on my lawn, how can I get rid of him? output: text: >- Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare sight, but I've got a plan that might help ye get rid of 'im. Ye'll need to gather some carrots and hay, and then lure the llama away with the promise of a tasty treat. Once he's gone, ye can clean up yer lawn and enjoy the peace and quiet once again. But beware, me hearty, for there may be more llamas where that one came from! Arr! model-index: - name: zephyr-7b-beta results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm name: normalized accuracy value: 62.03 - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm name: normalized accuracy value: 84.36 - task: type: text-generation name: Text Generation dataset: name: Drop (3-Shot) type: drop split: validation args: num_few_shot: 3 metrics: - type: f1 name: f1 score value: 9.66 - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.45 - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 12.74 - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 61.07 - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 77.74 - task: type: text-generation name: Text Generation dataset: name: AlpacaEval type: tatsu-lab/alpaca_eval metrics: - type: unknown name: win rate value: 0.906 - task: type: text-generation name: Text Generation dataset: name: MT-Bench type: unknown metrics: - type: unknown name: score value: 7.34 --- # Zephyr-7B-Beta (Fine-tuned for Subnet 20 BitAgent) This is a fine-tuned version of **Mistral-7B** adapted for **function-calling and reasoning tasks** in **Bittensor Subnet 20 (BitAgent)**. ## 🧠 Use Case - Works as an **agent LLM** inside the BitAgent subnet. - Supports **reasoning** and **function-calling outputs**. - Optimized for **task delegation and structured outputs**. ## 🚀 How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("username/zephyr-7b-beta-bitagent") tokenizer = AutoTokenizer.from_pretrained("username/zephyr-7b-beta-bitagent") prompt = "Summarize the latest research in AI safety in 3 bullet points." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True))