Upload model
Browse files- README.md +201 -0
- config.json +146 -0
- config.py +29 -0
- model.py +96 -0
- model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
|
| 201 |
+
|
config.json
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "liaad/srl-pt_bertimbau-base_hf",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"SRLModel"
|
| 5 |
+
],
|
| 6 |
+
"auto-map": {
|
| 7 |
+
"AutoConfig": "config.SRLModelConfig",
|
| 8 |
+
"AutoModel": "model.SRLModel"
|
| 9 |
+
},
|
| 10 |
+
"auto_map": {
|
| 11 |
+
"AutoConfig": "config.SRLModelConfig",
|
| 12 |
+
"AutoModel": "model.SRLModel"
|
| 13 |
+
},
|
| 14 |
+
"bert_model_name": "neuralmind/bert-base-portuguese-cased",
|
| 15 |
+
"embedding_dropout": 0.1,
|
| 16 |
+
"id2label": {
|
| 17 |
+
"0": "O",
|
| 18 |
+
"1": "[UNK]",
|
| 19 |
+
"10": "I-C-AM-PRD",
|
| 20 |
+
"11": "I-C-AM-TMP",
|
| 21 |
+
"12": "B-C-AM-LOC",
|
| 22 |
+
"13": "B-AM-PRD",
|
| 23 |
+
"14": "B-AM-EXT",
|
| 24 |
+
"15": "I-C-AM-LOC",
|
| 25 |
+
"16": "I-AM-PNC",
|
| 26 |
+
"17": "I-C-AM-CAU",
|
| 27 |
+
"18": "I-C-A2",
|
| 28 |
+
"19": "B-C-AM-MNR",
|
| 29 |
+
"2": "B-AM-CAU",
|
| 30 |
+
"20": "B-AM-PNC",
|
| 31 |
+
"21": "I-A2",
|
| 32 |
+
"22": "B-C-AM-ADV",
|
| 33 |
+
"23": "B-AM-REC",
|
| 34 |
+
"24": "B-C-A2",
|
| 35 |
+
"25": "B-AM-ADV",
|
| 36 |
+
"26": "B-A1",
|
| 37 |
+
"27": "I-C-AM-MNR",
|
| 38 |
+
"28": "I-A3",
|
| 39 |
+
"29": "I-C-AM-ADV",
|
| 40 |
+
"3": "I-AM-CAU",
|
| 41 |
+
"30": "I-A1",
|
| 42 |
+
"31": "B-A4",
|
| 43 |
+
"32": "B-C-A3",
|
| 44 |
+
"33": "B-AM-LOC",
|
| 45 |
+
"34": "B-C-A1",
|
| 46 |
+
"35": "I-AM-MNR",
|
| 47 |
+
"36": "B-A3",
|
| 48 |
+
"37": "B-A0",
|
| 49 |
+
"38": "B-C-A0",
|
| 50 |
+
"39": "I-AM-DIS",
|
| 51 |
+
"4": "B-C-AM-NEG",
|
| 52 |
+
"40": "I-AM-LOC",
|
| 53 |
+
"41": "B-AM-MNR",
|
| 54 |
+
"42": "I-AM-PRD",
|
| 55 |
+
"43": "B-C-AM-DIS",
|
| 56 |
+
"44": "B-C-AM-PRD",
|
| 57 |
+
"45": "I-AM-NEG",
|
| 58 |
+
"46": "B-AM-DIR",
|
| 59 |
+
"47": "B-C-V",
|
| 60 |
+
"48": "B-AM-DIS",
|
| 61 |
+
"49": "B-C-AM-CAU",
|
| 62 |
+
"5": "B-C-AM-TMP",
|
| 63 |
+
"50": "I-C-A0",
|
| 64 |
+
"51": "B-AM-NEG",
|
| 65 |
+
"52": "B-C-AM-EXT",
|
| 66 |
+
"53": "I-AM-DIR",
|
| 67 |
+
"54": "I-A0",
|
| 68 |
+
"55": "I-C-V",
|
| 69 |
+
"56": "B-V",
|
| 70 |
+
"57": "I-AM-EXT",
|
| 71 |
+
"58": "B-AM-TMP",
|
| 72 |
+
"59": "I-AM-ADV",
|
| 73 |
+
"6": "I-A4",
|
| 74 |
+
"60": "I-AM-TMP",
|
| 75 |
+
"7": "I-C-A3",
|
| 76 |
+
"8": "I-C-A1",
|
| 77 |
+
"9": "B-A2"
|
| 78 |
+
},
|
| 79 |
+
"label2id": {
|
| 80 |
+
"B-A0": 37,
|
| 81 |
+
"B-A1": 26,
|
| 82 |
+
"B-A2": 9,
|
| 83 |
+
"B-A3": 36,
|
| 84 |
+
"B-A4": 31,
|
| 85 |
+
"B-AM-ADV": 25,
|
| 86 |
+
"B-AM-CAU": 2,
|
| 87 |
+
"B-AM-DIR": 46,
|
| 88 |
+
"B-AM-DIS": 48,
|
| 89 |
+
"B-AM-EXT": 14,
|
| 90 |
+
"B-AM-LOC": 33,
|
| 91 |
+
"B-AM-MNR": 41,
|
| 92 |
+
"B-AM-NEG": 51,
|
| 93 |
+
"B-AM-PNC": 20,
|
| 94 |
+
"B-AM-PRD": 13,
|
| 95 |
+
"B-AM-REC": 23,
|
| 96 |
+
"B-AM-TMP": 58,
|
| 97 |
+
"B-C-A0": 38,
|
| 98 |
+
"B-C-A1": 34,
|
| 99 |
+
"B-C-A2": 24,
|
| 100 |
+
"B-C-A3": 32,
|
| 101 |
+
"B-C-AM-ADV": 22,
|
| 102 |
+
"B-C-AM-CAU": 49,
|
| 103 |
+
"B-C-AM-DIS": 43,
|
| 104 |
+
"B-C-AM-EXT": 52,
|
| 105 |
+
"B-C-AM-LOC": 12,
|
| 106 |
+
"B-C-AM-MNR": 19,
|
| 107 |
+
"B-C-AM-NEG": 4,
|
| 108 |
+
"B-C-AM-PRD": 44,
|
| 109 |
+
"B-C-AM-TMP": 5,
|
| 110 |
+
"B-C-V": 47,
|
| 111 |
+
"B-V": 56,
|
| 112 |
+
"I-A0": 54,
|
| 113 |
+
"I-A1": 30,
|
| 114 |
+
"I-A2": 21,
|
| 115 |
+
"I-A3": 28,
|
| 116 |
+
"I-A4": 6,
|
| 117 |
+
"I-AM-ADV": 59,
|
| 118 |
+
"I-AM-CAU": 3,
|
| 119 |
+
"I-AM-DIR": 53,
|
| 120 |
+
"I-AM-DIS": 39,
|
| 121 |
+
"I-AM-EXT": 57,
|
| 122 |
+
"I-AM-LOC": 40,
|
| 123 |
+
"I-AM-MNR": 35,
|
| 124 |
+
"I-AM-NEG": 45,
|
| 125 |
+
"I-AM-PNC": 16,
|
| 126 |
+
"I-AM-PRD": 42,
|
| 127 |
+
"I-AM-TMP": 60,
|
| 128 |
+
"I-C-A0": 50,
|
| 129 |
+
"I-C-A1": 8,
|
| 130 |
+
"I-C-A2": 18,
|
| 131 |
+
"I-C-A3": 7,
|
| 132 |
+
"I-C-AM-ADV": 29,
|
| 133 |
+
"I-C-AM-CAU": 17,
|
| 134 |
+
"I-C-AM-LOC": 15,
|
| 135 |
+
"I-C-AM-MNR": 27,
|
| 136 |
+
"I-C-AM-PRD": 10,
|
| 137 |
+
"I-C-AM-TMP": 11,
|
| 138 |
+
"I-C-V": 55,
|
| 139 |
+
"O": 0,
|
| 140 |
+
"[UNK]": 1
|
| 141 |
+
},
|
| 142 |
+
"model_type": "srl",
|
| 143 |
+
"num_labels": 61,
|
| 144 |
+
"torch_dtype": "float32",
|
| 145 |
+
"transformers_version": "4.39.3"
|
| 146 |
+
}
|
config.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
class SRLModelConfig(PretrainedConfig):
|
| 4 |
+
model_type = "srl"
|
| 5 |
+
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
num_labels=0,
|
| 9 |
+
bert_model_name="bert-base-uncased",
|
| 10 |
+
embedding_dropout=0.0,
|
| 11 |
+
label2id = {},
|
| 12 |
+
id2label = {},
|
| 13 |
+
**kwargs,
|
| 14 |
+
):
|
| 15 |
+
super().__init__(**kwargs)
|
| 16 |
+
self.num_labels = num_labels
|
| 17 |
+
self.bert_model_name = bert_model_name
|
| 18 |
+
self.embedding_dropout = embedding_dropout
|
| 19 |
+
self.label2id = label2id
|
| 20 |
+
self.id2label = id2label
|
| 21 |
+
|
| 22 |
+
def to_dict(self):
|
| 23 |
+
config_dict = super().to_dict()
|
| 24 |
+
|
| 25 |
+
config_dict["num_labels"] = self.num_labels
|
| 26 |
+
# config_dict["bert_model_name"] = self.bert_model_name
|
| 27 |
+
# config_dict["embedding_dropout"] = self.embedding_dropout
|
| 28 |
+
|
| 29 |
+
return config_dict
|
model.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer, PreTrainedModel
|
| 4 |
+
from config import SRLModelConfig
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SRLModel(PreTrainedModel):
|
| 8 |
+
config_class = SRLModelConfig
|
| 9 |
+
|
| 10 |
+
def __init__(self, config):
|
| 11 |
+
super().__init__(config)
|
| 12 |
+
|
| 13 |
+
print(config.num_labels, config.bert_model_name, config.embedding_dropout)
|
| 14 |
+
|
| 15 |
+
# Load pre-trained transformer-based model and tokenizer
|
| 16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.bert_model_name)
|
| 17 |
+
self.transformer = AutoModel.from_pretrained(
|
| 18 |
+
config.bert_model_name,
|
| 19 |
+
num_labels=config.num_labels,
|
| 20 |
+
output_hidden_states=True,
|
| 21 |
+
)
|
| 22 |
+
self.transformer.config.id2label = config.id2label
|
| 23 |
+
self.transformer.config.label2id = config.label2id
|
| 24 |
+
|
| 25 |
+
# The roberta models do not have token_type_embeddings
|
| 26 |
+
# (the type_vocab_size is 1)
|
| 27 |
+
# but we use this to pass the verb's position
|
| 28 |
+
# so we need to change the model and initialize the embeddings randomly
|
| 29 |
+
if "xlm" in config.bert_model_name or "roberta" in config.bert_model_name:
|
| 30 |
+
self.transformer.config.type_vocab_size = 2
|
| 31 |
+
# Create a new Embeddings layer, with 2 possible segments IDs instead of 1
|
| 32 |
+
self.transformer.embeddings.token_type_embeddings = nn.Embedding(
|
| 33 |
+
2, self.transformer.config.hidden_size
|
| 34 |
+
)
|
| 35 |
+
# Initialize it
|
| 36 |
+
self.transformer.embeddings.token_type_embeddings.weight.data.normal_(
|
| 37 |
+
mean=0.0, std=self.transformer.config.initializer_range
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Linear layer for tag projection
|
| 41 |
+
self.tag_projection_layer = nn.Linear(
|
| 42 |
+
self.transformer.config.hidden_size, config.num_labels
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Dropout layer for embeddings
|
| 46 |
+
self.embedding_dropout = nn.Dropout(p=config.embedding_dropout)
|
| 47 |
+
|
| 48 |
+
# Number of labels
|
| 49 |
+
self.num_labels = config.num_labels
|
| 50 |
+
|
| 51 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None):
|
| 52 |
+
|
| 53 |
+
# print("FORWARD")
|
| 54 |
+
# print(labels)
|
| 55 |
+
|
| 56 |
+
# Forward pass through the transformer model
|
| 57 |
+
# Returns BaseModelOutputWithPoolingAndCrossAttentions
|
| 58 |
+
outputs = self.transformer(
|
| 59 |
+
input_ids=input_ids,
|
| 60 |
+
attention_mask=attention_mask,
|
| 61 |
+
token_type_ids=token_type_ids,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Extract the [CLS] token representation
|
| 65 |
+
# cls_output = outputs.pooler_output
|
| 66 |
+
|
| 67 |
+
bert_embedding = outputs.last_hidden_state
|
| 68 |
+
|
| 69 |
+
# Apply dropout to the embeddings
|
| 70 |
+
embedded_text_input = self.embedding_dropout(bert_embedding)
|
| 71 |
+
|
| 72 |
+
# Project to tag space
|
| 73 |
+
logits = self.tag_projection_layer(embedded_text_input)
|
| 74 |
+
|
| 75 |
+
reshaped_log_probs = logits.view(-1, self.num_labels)
|
| 76 |
+
class_probabilities = F.softmax(reshaped_log_probs, dim=-1).view(
|
| 77 |
+
logits.size(0), logits.size(1), -1
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
output_dict = {"logits": logits, "class_probabilities": class_probabilities}
|
| 81 |
+
|
| 82 |
+
output_dict["attention_mask"] = attention_mask
|
| 83 |
+
output_dict["input_ids"] = input_ids
|
| 84 |
+
# output_dict["start_offsets"] = start_offsets
|
| 85 |
+
|
| 86 |
+
if labels is not None:
|
| 87 |
+
# print("Input", logits.view(-1, self.num_labels).size())
|
| 88 |
+
# print("Target", labels.view(-1).size())
|
| 89 |
+
# print("C", self.num_labels)
|
| 90 |
+
# print("AllenNLP function", logits.size(-1))
|
| 91 |
+
# Could consider passing ignore_index as 0 (pad index) for minor optimization
|
| 92 |
+
loss = nn.CrossEntropyLoss(ignore_index=-100)(
|
| 93 |
+
logits.view(-1, self.num_labels), labels.view(-1)
|
| 94 |
+
)
|
| 95 |
+
output_dict["loss"] = loss
|
| 96 |
+
return output_dict
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed69dae877e6013b39aa4d708aa65c14dc0cd0b8202b63573df7318a8aae5da1
|
| 3 |
+
size 435905116
|