Add new SentenceTransformer model
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +1683 -0
- config.json +47 -0
- config_sentence_transformers.json +49 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +968 -0
1_Dense/config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"in_features": 768, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37fe595979a3bb75600e83b6d8e9db88983417366acb47a2c0915a89562843fd
|
| 3 |
+
size 393304
|
README.md
ADDED
|
@@ -0,0 +1,1683 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- ColBERT
|
| 6 |
+
- PyLate
|
| 7 |
+
- sentence-transformers
|
| 8 |
+
- sentence-similarity
|
| 9 |
+
- feature-extraction
|
| 10 |
+
- generated_from_trainer
|
| 11 |
+
- dataset_size:100521
|
| 12 |
+
- loss:CachedContrastive
|
| 13 |
+
base_model: lightonai/GTE-ModernColBERT-v1
|
| 14 |
+
datasets:
|
| 15 |
+
- reasonir/reasonir-data
|
| 16 |
+
pipeline_tag: sentence-similarity
|
| 17 |
+
library_name: PyLate
|
| 18 |
+
license: cc-by-nc-4.0
|
| 19 |
+
---
|
| 20 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/609bbe2f4932693ca2009d6a/_XuHfcsUg_uV7vGU42lvE.png" width="500" height="auto">
|
| 21 |
+
|
| 22 |
+
# Reason-ModernColBERT
|
| 23 |
+
Reason-ModernColBERT is a late interaction model trained on the [reasonir-hq](https://huggingface.co/datasets/reasonir/reasonir-data) dataset.
|
| 24 |
+
It achieves extremely competitive performance on the [BRIGHT benchmark](https://huggingface.co/datasets/xlangai/BRIGHT) aimed at evaluating reasoning-intensive retrieval performance, outperforming all existing models up to 7B (more than 45 times its size) and even surprisingly improving performance of [ReasonIR-8B](https://huggingface.co/reasonir/ReasonIR-8B) (a 8B model trained on the same data) by more than 2.5 NDCG@10 on average on Stack Exchange splits. We attribute such strong results to late-interaction, see [evaluation section](#evaluation).
|
| 25 |
+
|
| 26 |
+
# License
|
| 27 |
+
Unfortunately, since the [ReasonIR data](https://huggingface.co/datasets/reasonir/reasonir-data) has been released under a cc-by-nc-4.0 license, we cannot release this model under an Apache 2.0 license. However, the authors of ReasonIR [released code to generate the data](https://github.com/facebookresearch/ReasonIR/tree/main/synthetic_data_generation). Anyone willing to reproduce the data could then easily reproduce this model under an Apache 2.0 license by running a fine-tuning lasting lower than 2 hours using [this boilerplate](https://gist.github.com/NohTow/d563244596548bf387f19fcd790664d3).
|
| 28 |
+
# PyLate model based on lightonai/GTE-ModernColBERT-v1
|
| 29 |
+
|
| 30 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) on the [reasonir-hq](https://huggingface.co/datasets/reasonir/reasonir-data) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
| 31 |
+
|
| 32 |
+
## Model Details
|
| 33 |
+
|
| 34 |
+
### Model Description
|
| 35 |
+
- **Model Type:** PyLate model
|
| 36 |
+
- **Base model:** [lightonai/GTE-ModernColBERT-v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) <!-- at revision 78d50a162b04dfdc45c3af6b4294ba77c24888a3 -->
|
| 37 |
+
- **Document Length:** 8192 tokens
|
| 38 |
+
- **Query Length:** 128 tokens
|
| 39 |
+
- **Output Dimensionality:** 128 tokens
|
| 40 |
+
- **Similarity Function:** MaxSim
|
| 41 |
+
- **Training Dataset:**
|
| 42 |
+
- [reasonir-hq](https://huggingface.co/datasets/reasonir/reasonir-data)
|
| 43 |
+
- **Language:** en
|
| 44 |
+
<!-- - **License:** Unknown -->
|
| 45 |
+
|
| 46 |
+
### Model Sources
|
| 47 |
+
|
| 48 |
+
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
|
| 49 |
+
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
|
| 50 |
+
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
|
| 51 |
+
|
| 52 |
+
### Full Model Architecture
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
ColBERT(
|
| 56 |
+
(0): Transformer({'max_seq_length': 127, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
| 57 |
+
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 58 |
+
)
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
## Usage
|
| 62 |
+
First install the PyLate library:
|
| 63 |
+
|
| 64 |
+
```bash
|
| 65 |
+
pip install -U pylate
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
### Retrieval
|
| 69 |
+
|
| 70 |
+
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
|
| 71 |
+
|
| 72 |
+
#### Indexing documents
|
| 73 |
+
|
| 74 |
+
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
|
| 75 |
+
|
| 76 |
+
```python
|
| 77 |
+
from pylate import indexes, models, retrieve
|
| 78 |
+
|
| 79 |
+
# Step 1: Load the ColBERT model
|
| 80 |
+
model = models.ColBERT(
|
| 81 |
+
model_name_or_path=pylate_model_id,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# Step 2: Initialize the Voyager index
|
| 85 |
+
index = indexes.Voyager(
|
| 86 |
+
index_folder="pylate-index",
|
| 87 |
+
index_name="index",
|
| 88 |
+
override=True, # This overwrites the existing index if any
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Step 3: Encode the documents
|
| 92 |
+
documents_ids = ["1", "2", "3"]
|
| 93 |
+
documents = ["document 1 text", "document 2 text", "document 3 text"]
|
| 94 |
+
|
| 95 |
+
documents_embeddings = model.encode(
|
| 96 |
+
documents,
|
| 97 |
+
batch_size=32,
|
| 98 |
+
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
|
| 99 |
+
show_progress_bar=True,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
|
| 103 |
+
index.add_documents(
|
| 104 |
+
documents_ids=documents_ids,
|
| 105 |
+
documents_embeddings=documents_embeddings,
|
| 106 |
+
)
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
# To load an index, simply instantiate it with the correct folder/name and without overriding it
|
| 113 |
+
index = indexes.Voyager(
|
| 114 |
+
index_folder="pylate-index",
|
| 115 |
+
index_name="index",
|
| 116 |
+
)
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
#### Retrieving top-k documents for queries
|
| 120 |
+
|
| 121 |
+
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
|
| 122 |
+
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
|
| 123 |
+
|
| 124 |
+
```python
|
| 125 |
+
# Step 1: Initialize the ColBERT retriever
|
| 126 |
+
retriever = retrieve.ColBERT(index=index)
|
| 127 |
+
|
| 128 |
+
# Step 2: Encode the queries
|
| 129 |
+
queries_embeddings = model.encode(
|
| 130 |
+
["query for document 3", "query for document 1"],
|
| 131 |
+
batch_size=32,
|
| 132 |
+
is_query=True, # # Ensure that it is set to False to indicate that these are queries
|
| 133 |
+
show_progress_bar=True,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Step 3: Retrieve top-k documents
|
| 137 |
+
scores = retriever.retrieve(
|
| 138 |
+
queries_embeddings=queries_embeddings,
|
| 139 |
+
k=10, # Retrieve the top 10 matches for each query
|
| 140 |
+
)
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
### Reranking
|
| 144 |
+
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
| 145 |
+
|
| 146 |
+
```python
|
| 147 |
+
from pylate import rank, models
|
| 148 |
+
|
| 149 |
+
queries = [
|
| 150 |
+
"query A",
|
| 151 |
+
"query B",
|
| 152 |
+
]
|
| 153 |
+
|
| 154 |
+
documents = [
|
| 155 |
+
["document A", "document B"],
|
| 156 |
+
["document 1", "document C", "document B"],
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
documents_ids = [
|
| 160 |
+
[1, 2],
|
| 161 |
+
[1, 3, 2],
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
model = models.ColBERT(
|
| 165 |
+
model_name_or_path=pylate_model_id,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
queries_embeddings = model.encode(
|
| 169 |
+
queries,
|
| 170 |
+
is_query=True,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
documents_embeddings = model.encode(
|
| 174 |
+
documents,
|
| 175 |
+
is_query=False,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
reranked_documents = rank.rerank(
|
| 179 |
+
documents_ids=documents_ids,
|
| 180 |
+
queries_embeddings=queries_embeddings,
|
| 181 |
+
documents_embeddings=documents_embeddings,
|
| 182 |
+
)
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
<!--
|
| 186 |
+
### Direct Usage (Transformers)
|
| 187 |
+
|
| 188 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 189 |
+
|
| 190 |
+
</details>
|
| 191 |
+
-->
|
| 192 |
+
|
| 193 |
+
<!--
|
| 194 |
+
### Downstream Usage (Sentence Transformers)
|
| 195 |
+
|
| 196 |
+
You can finetune this model on your own dataset.
|
| 197 |
+
|
| 198 |
+
<details><summary>Click to expand</summary>
|
| 199 |
+
|
| 200 |
+
</details>
|
| 201 |
+
-->
|
| 202 |
+
|
| 203 |
+
<!--
|
| 204 |
+
### Out-of-Scope Use
|
| 205 |
+
|
| 206 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 207 |
+
-->
|
| 208 |
+
|
| 209 |
+
<!--
|
| 210 |
+
## Bias, Risks and Limitations
|
| 211 |
+
|
| 212 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 213 |
+
-->
|
| 214 |
+
|
| 215 |
+
<!--
|
| 216 |
+
### Recommendations
|
| 217 |
+
|
| 218 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 219 |
+
-->
|
| 220 |
+
## Evaluation
|
| 221 |
+
### BRIGHT Benchmark
|
| 222 |
+
The [BRIGHT benchmark](https://huggingface.co/datasets/xlangai/BRIGHT) is aimed at evaluating reasoning-intensive retrieval performance. Reason-ModernColBERT outperforms all existing models up to 7B (more than 45 times its size) and even surprisingly improving performance of [ReasonIR-8B](https://huggingface.co/reasonir/ReasonIR-8B) (a 8B model trained on the same data) by more than 2.5 NDCG@10 on average on Stack Exchange splits. We attribute such strong results to late-interaction compared to usual dense (single vector) retrieval performed by other models as highlighted in the next section.
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
| Model / Metric | Biology | Earth | Economics | Psychology | Robotics | Stackoverflow | Sustainable | Leetcode | Pony | AoPS | Theorem - Q | Theorem - T | Mean StackExchange | Mean coding | Mean theorem | Full mean |
|
| 226 |
+
|----------------------------------------------------------|---------|-------|-----------|------------|----------|---------------|-------------|----------|------|------|-----------|-----------|-------------------|-------------|--------------|-----------|
|
| 227 |
+
| BM25 | 18.9 | 27.2 | 14.9 | 12.5 | 13.6 | 18.4 | 15 | 24.4 | 7.9 | 6.2 | 10.4 | 4.9 | 17.21 | 16.15 | 7.17 | 14.53 |
|
| 228 |
+
| **< 1B OS** | | | | | | | | | | | | | | | | |
|
| 229 |
+
| BGE | 11.7 | 24.6 | 16.6 | 17.5 | 11.7 | 10.8 | 13.3 | 26.7 | 5.7 | 6 | 13 | 6.9 | 15.17 | 16.2 | 8.63 | 13.71 |
|
| 230 |
+
| Inst-L | 15.2 | 21.2 | 14.7 | 22.3 | 11.4 | 13.3 | 13.5 | 19.5 | 1.3 | 8.1 | 20.9 | 9.1 | 15.94 | 10.4 | 12.7 | 14.21 |
|
| 231 |
+
| SBERT | 15.1 | 20.4 | 16.6 | 22.7 | 8.2 | 11 | 15.3 | 26.4 | 7 | 5.3 | 20 | 10.8 | 15.61 | 16.7 | 12.03 | 14.9 |
|
| 232 |
+
| **> 1B OS** | | | | | | | | | | | | | | | | |
|
| 233 |
+
| E5 | 18.6 | 26 | 15.5 | 15.8 | 16.3 | 11.2 | 18.1 | 28.7 | 4.9 | 7.1 | 26.1 | 26.8 | 17.36 | 16.8 | 20 | 17.93 |
|
| 234 |
+
| SFR | 19.1 | 26.7 | 17.8 | 19 | 16.3 | 14.4 | 19.2 | 27.4 | 2 | 7.4 | 24.3 | 26 | 18.93 | 14.7 | 19.23 | 18.3 |
|
| 235 |
+
| Inst-XL | 21.6 | 34.3 | 22.4 | 27.4 | 18.2 | 21.2 | 19.1 | 27.5 | 5 | 8.5 | 15.6 | 5.9 | 23.46 | 16.25 | 10 | 18.89 |
|
| 236 |
+
| GritLM | 24.8 | 32.3 | 18.9 | 19.8 | 17.1 | 13.6 | 17.8 | 29.9 | 22 | 8.8 | 25.2 | 21.2 | 20.61 | 25.95 | 18.4 | 20.95 |
|
| 237 |
+
| Qwen | 30.6 | 36.4 | 17.8 | 24.6 | 13.2 | 22.2 | 14.8 | 25.5 | 9.9 | 14.4 | 27.8 | 32.9 | 22.8 | 17.7 | 25.03 | 22.51 |
|
| 238 |
+
| **Proprietary** | | | | | | | | | | | | | | | | |
|
| 239 |
+
| Cohere | 18.7 | 28.4 | 20.4 | 21.6 | 16.3 | 18.3 | 17.6 | 26.8 | 1.9 | 6.3 | 15.7 | 7.2 | 20.19 | 14.35 | 9.73 | 16.6 |
|
| 240 |
+
| OpenAI | 23.3 | 26.7 | 19.5 | 27.6 | 12.8 | 14.3 | 20.5 | 23.6 | 2.4 | 8.5 | 23.5 | 11.7 | 20.67 | 13 | 14.57 | 17.87 |
|
| 241 |
+
| Voyage | 23.1 | 25.4 | 19.9 | 24.9 | 10.8 | 16.8 | 15.4 | 30.6 | 1.5 | 7.5 | 27.4 | 11.6 | 19.47 | 16.05 | 15.5 | 17.91 |
|
| 242 |
+
| Google | 22.7 | 34.8 | 19.6 | 27.8 | 15.7 | 20.1 | 17.1 | 29.6 | 3.6 | 9.3 | 23.8 | 15.9 | 22.54 | 16.6 | 16.33 | 20 |
|
| 243 |
+
**ReasonIR data**
|
| 244 |
+
| ReasonIR-8B | 26.2 | 31.4 | 23.3 | 30 | 18 | **23.9** | **20.5** | **35** | **10.5** | **14.7** | **31.9** | **27.2** | 24.76 | **22.75** | **24.6** | **24.38** |
|
| 245 |
+
| Reason-ModernColBERT (150M) | **33.25** | **41.02** | **24.93** | **30.73** | **21.12** | 20.62 | 20.31 | 31.07 | 8.51 | 9.17 | 19.51 | 11.24 | **27.43** | 19.79 | 15.38 | 22.62 |
|
| 246 |
+
|
| 247 |
+
### Comparison with a dense model
|
| 248 |
+
A fair claim would be that the performance of Reason-ModernColBERT are mostly due to the [ReasonIR data](https://huggingface.co/datasets/reasonir/reasonir-data). Although the differences between ReasonIR-8B and Reason-ModernColBERT already hint that it is most likely more than just that, we conducted a small experiment by training a dense (single vector) model in the same setup using Sentence Transformers as a multi-vector one trained using PyLate. This experiment highlights a very large gap in performance.
|
| 249 |
+
Obviously, more rigourous experiments are required to draw conclusion (e.g, both models could have been further tuned and the training could have been enhanced (e.g, we did not gather negatives from other GPUs in these experiments because ST do not supports it for now)) but the gap seems really big and it does correlate pretty well with Reason-ModernColBERT being competitive with ReasonIR-8B while being more than 50 times smaller.
|
| 250 |
+
|
| 251 |
+
| Model/Split | Biology | Earth | Economics | Psychology | Robotics | Stackoverflow | Sustainable | Leetcode | Pony | AoPS | Theorem Q | Theorem T | Mean StackExchange | Mean coding | Mean theorem | Full mean |
|
| 252 |
+
| :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- |
|
| 253 |
+
| Dense (single vector) model | 7.51 | 16.92 | 13.43 | 17.18 | 10.23 | 8.93 | 8.85 | 24.88 | 1.43 | 9.81 | **18.83** | **9.71** | 11.86 | 13.16 | **12.78** | 12.31 |
|
| 254 |
+
| Late-interaction (multi vector model) | **28.02** | **39.25** | **21.51** | **27.05** | **19.86** | **17.23** | **21.1** | **27.37** | **3.76** | **6.87** | 16.06 | 7.21 | **24.86** | **15.57** | 10.05 | **19.61** |
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
## Training Details
|
| 259 |
+
|
| 260 |
+
### Training Dataset
|
| 261 |
+
|
| 262 |
+
#### reasonir-hq
|
| 263 |
+
|
| 264 |
+
* Dataset: [train](https://huggingface.co/datasets/reasonir/reasonir-data) at [0275f82](https://huggingface.co/datasets/reasonir/reasonir-data/tree/0275f825929b206d4ead23d34b4f8a50d4eddbc8)
|
| 265 |
+
* Size: 100,521 training samples
|
| 266 |
+
* Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
|
| 267 |
+
* Approximate statistics based on the first 1000 samples:
|
| 268 |
+
| | query | pos | neg |
|
| 269 |
+
|:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
| 270 |
+
| type | string | string | string |
|
| 271 |
+
| details | <ul><li>min: 38 tokens</li><li>mean: 97.84 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 85 tokens</li><li>mean: 127.63 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 81 tokens</li><li>mean: 127.77 tokens</li><li>max: 128 tokens</li></ul> |
|
| 272 |
+
* Samples:
|
| 273 |
+
| query | pos | neg |
|
| 274 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 275 |
+
| <code>Given this reasoning-intensive query, find relevant documents that could help answer the question. A researcher is analyzing a sound signal represented by the equation f(t) = 2sin(3πt) + sin(5πt) + 0.5sin(7πt). Using the Fourier transform, what are the frequencies, amplitudes, and phases of the individual sinusoidal components in the signal?</code> | <code> A sound signal is given by the equation f(t) = sin(2πt) + sin(4πt) + sin(6πt) where t is time in seconds. Use Fourier transform to find the frequencies, amplitudes, and phases of the individual sinusoidal components in the signal.<br>To find the frequencies, amplitudes, and phases of the individual sinusoidal components in the signal f(t) = sin(2πt) + sin(4πt) + sin(6πt), we can use the Fourier transform. The Fourier transform of a continuous function f(t) is given by:<br><br>F(ω) = ∫[f(t) * e^(-jωt)] dt<br><br>where F(ω) is the Fourier transform of f(t), ω is the angular frequency, and j is the imaginary unit (j^2 = -1). In this case, f(t) is already given as a sum of sinusoidal functions, so we can directly identify the frequencies, amplitudes, and phases of the individual components.<br><br>1. First component: sin(2πt)<br>- Frequency: The angular frequency is 2π, so the frequency is ω/(2π) = 1 Hz.<br>- Amplitude: The coefficient of the sine function is 1, so the amplitude is 1.<br>- Phase: There is no phase shi...</code> | <code> The Fourier transform is widely used in various fields, including engineering, physics, and data analysis. It is a powerful tool for decomposing a signal into its constituent frequencies. In music, for example, the Fourier transform can be used to analyze the frequency components of a sound wave. By applying the Fourier transform to a sound signal, one can identify the different frequencies present in the signal, as well as their relative amplitudes. This information can be useful in a variety of applications, such as sound filtering and audio processing. The Fourier transform can also be used to analyze images and other types of data. In image processing, the Fourier transform can be used to filter out noise and other unwanted features from an image. It can also be used to compress images by representing them in the frequency domain. In addition to its many practical applications, the Fourier transform also has a number of interesting theoretical properties. For example, it has been ...</code> |
|
| 276 |
+
| <code>Given this reasoning-intensive query, find relevant documents that could help answer the question. A manufacturer is designing a cone-shaped container with a fixed volume of 200π cubic centimeters. The container's height is 12 centimeters, and the radius of the base is unknown. If the manufacturer wants to minimize the surface area of the container while maintaining its volume, what should be the radius of the base?</code> | <code> A right circular cone has a radius of 6cm and a slant height of 10cm. Determine the surface area of the cone.<br>To find the surface area of a right circular cone, we need to calculate the area of the base and the lateral surface area, and then add them together.<br><br>The base of the cone is a circle with radius r = 6 cm. The area of the base (A_base) can be found using the formula for the area of a circle:<br><br>A_base = πr^2<br>A_base = π(6 cm)^2<br>A_base = 36π cm^2<br><br>The lateral surface area (A_lateral) can be found using the formula for the lateral surface area of a cone:<br><br>A_lateral = πrs, where r is the radius and s is the slant height.<br><br>Given that the slant height s = 10 cm, we can calculate the lateral surface area:<br><br>A_lateral = π(6 cm)(10 cm)<br>A_lateral = 60π cm^2<br><br>Now, we can find the total surface area (A_total) by adding the base area and the lateral surface area:<br><br>A_total = A_base + A_lateral<br>A_total = 36π cm^2 + 60π cm^2<br>A_total = 96π cm^2<br><br>The surface area of the cone is 96π cm^2.</code> | <code> Torus-Shaped Containers in Chemical Engineering - New Designs and ApplicationsTorus-shaped containers are commonly used in chemical engineering for storing and transporting fluids. These containers have a distinctive doughnut shape, with a central hole and a circular cross-section. In this article, we will explore the design and applications of torus-shaped containers in chemical engineering.One of the main advantages of torus-shaped containers is their high volume-to-surface-area ratio. This makes them ideal for storing large quantities of fluids while minimizing the amount of material needed for construction. Additionally, the curved shape of the container provides added strength and stability, making it less prone to rupture or leakage.The design of torus-shaped containers typically involves the use of computer-aided design (CAD) software to create detailed models of the container's geometry. Engineers can then use these models to simulate various scenarios, such as fluid flow and ...</code> |
|
| 277 |
+
| <code>Given this reasoning-intensive query, find relevant documents that could help answer the question. On the xy-coordinate plane, points A and B are given as A(2, 4) and B(8, -3). Determine the coordinates of the point on line segment AB that is three times as far from A as it is from B.</code> | <code> On the xy co-ordinate plane, point C is (5,-2) and point D is (-1,1.5). The point on line segment CD that is twice as far from C as from D is:<br>Answer Choices: (A) (1,-1) (B) (1,1) (C) (2,0.25) (D) (3,0.5) (E) (3,1) <br>Let's think about the multi-choice question step by step.<br>We want the point on the line that is twice as far from C as it is from D. We can examine the x and y coordinates separately since they are independent.<br>*It should be noted that there are two solutions to this problem, one point between C and D, and another point with D in the middle of C and the point. We can quickly look at the answer choices and see that all the points are between C and D, therefore we can search for that point using the following method:<br>Taking the x-coordinate first, the distance between C and D is |(x-coordinate ofC - (x-coordinate ofD|= |5 - (-1)| = 6<br>The x-coordinate that is twice as far from C as it is from D (and in between C andD will be 4 units from C and 2 units from D. So the ...</code> | <code> The concept of midpoint is often useful in various mathematical problems, but sometimes we need to find other points that divide a line segment in a particular ratio. One common scenario is when we need to find the point that divides the line segment in the ratio of the other two points. Let's consider an example to understand this better. Suppose we have two points E(3, 4) and F(7, -2) on the xy-coordinate plane, and we want to find the point G on the line segment EF such that EG:GF = 2:5. To solve this problem, we can use the concept of section formula, which states that if a point P(x, y) divides the line segment joining the points A(x1, y1) and B(x2, y2) in the ratio m:n, then the coordinates of P are ((mx2+nx1)/(m+n), (my2+ny1)/(m+n)). Using this formula, we can find the coordinates of point G. First, we need to find the difference in x-coordinates and y-coordinates of points E and F. The difference in x-coordinates is 7 - 3 = 4, and the difference in y-coordinates is -2 - 4 = -6...</code> |
|
| 278 |
+
* Loss: <code>pylate.losses.cached_contrastive.CachedContrastive</code>
|
| 279 |
+
|
| 280 |
+
### Training Hyperparameters
|
| 281 |
+
#### Non-Default Hyperparameters
|
| 282 |
+
|
| 283 |
+
- `per_device_train_batch_size`: 256
|
| 284 |
+
- `per_device_eval_batch_size`: 256
|
| 285 |
+
- `learning_rate`: 1e-05
|
| 286 |
+
- `bf16`: True
|
| 287 |
+
- `dataloader_num_workers`: 8
|
| 288 |
+
|
| 289 |
+
#### All Hyperparameters
|
| 290 |
+
<details><summary>Click to expand</summary>
|
| 291 |
+
|
| 292 |
+
- `overwrite_output_dir`: False
|
| 293 |
+
- `do_predict`: False
|
| 294 |
+
- `eval_strategy`: no
|
| 295 |
+
- `prediction_loss_only`: True
|
| 296 |
+
- `per_device_train_batch_size`: 256
|
| 297 |
+
- `per_device_eval_batch_size`: 256
|
| 298 |
+
- `per_gpu_train_batch_size`: None
|
| 299 |
+
- `per_gpu_eval_batch_size`: None
|
| 300 |
+
- `gradient_accumulation_steps`: 1
|
| 301 |
+
- `eval_accumulation_steps`: None
|
| 302 |
+
- `torch_empty_cache_steps`: None
|
| 303 |
+
- `learning_rate`: 1e-05
|
| 304 |
+
- `weight_decay`: 0.0
|
| 305 |
+
- `adam_beta1`: 0.9
|
| 306 |
+
- `adam_beta2`: 0.999
|
| 307 |
+
- `adam_epsilon`: 1e-08
|
| 308 |
+
- `max_grad_norm`: 1.0
|
| 309 |
+
- `num_train_epochs`: 3
|
| 310 |
+
- `max_steps`: -1
|
| 311 |
+
- `lr_scheduler_type`: linear
|
| 312 |
+
- `lr_scheduler_kwargs`: {}
|
| 313 |
+
- `warmup_ratio`: 0.0
|
| 314 |
+
- `warmup_steps`: 0
|
| 315 |
+
- `log_level`: passive
|
| 316 |
+
- `log_level_replica`: warning
|
| 317 |
+
- `log_on_each_node`: True
|
| 318 |
+
- `logging_nan_inf_filter`: True
|
| 319 |
+
- `save_safetensors`: True
|
| 320 |
+
- `save_on_each_node`: False
|
| 321 |
+
- `save_only_model`: False
|
| 322 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 323 |
+
- `no_cuda`: False
|
| 324 |
+
- `use_cpu`: False
|
| 325 |
+
- `use_mps_device`: False
|
| 326 |
+
- `seed`: 42
|
| 327 |
+
- `data_seed`: None
|
| 328 |
+
- `jit_mode_eval`: False
|
| 329 |
+
- `use_ipex`: False
|
| 330 |
+
- `bf16`: True
|
| 331 |
+
- `fp16`: False
|
| 332 |
+
- `fp16_opt_level`: O1
|
| 333 |
+
- `half_precision_backend`: auto
|
| 334 |
+
- `bf16_full_eval`: False
|
| 335 |
+
- `fp16_full_eval`: False
|
| 336 |
+
- `tf32`: None
|
| 337 |
+
- `local_rank`: 0
|
| 338 |
+
- `ddp_backend`: None
|
| 339 |
+
- `tpu_num_cores`: None
|
| 340 |
+
- `tpu_metrics_debug`: False
|
| 341 |
+
- `debug`: []
|
| 342 |
+
- `dataloader_drop_last`: False
|
| 343 |
+
- `dataloader_num_workers`: 8
|
| 344 |
+
- `dataloader_prefetch_factor`: None
|
| 345 |
+
- `past_index`: -1
|
| 346 |
+
- `disable_tqdm`: False
|
| 347 |
+
- `remove_unused_columns`: True
|
| 348 |
+
- `label_names`: None
|
| 349 |
+
- `load_best_model_at_end`: False
|
| 350 |
+
- `ignore_data_skip`: False
|
| 351 |
+
- `fsdp`: []
|
| 352 |
+
- `fsdp_min_num_params`: 0
|
| 353 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 354 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 355 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 356 |
+
- `deepspeed`: None
|
| 357 |
+
- `label_smoothing_factor`: 0.0
|
| 358 |
+
- `optim`: adamw_torch
|
| 359 |
+
- `optim_args`: None
|
| 360 |
+
- `adafactor`: False
|
| 361 |
+
- `group_by_length`: False
|
| 362 |
+
- `length_column_name`: length
|
| 363 |
+
- `ddp_find_unused_parameters`: None
|
| 364 |
+
- `ddp_bucket_cap_mb`: None
|
| 365 |
+
- `ddp_broadcast_buffers`: False
|
| 366 |
+
- `dataloader_pin_memory`: True
|
| 367 |
+
- `dataloader_persistent_workers`: False
|
| 368 |
+
- `skip_memory_metrics`: True
|
| 369 |
+
- `use_legacy_prediction_loop`: False
|
| 370 |
+
- `push_to_hub`: False
|
| 371 |
+
- `resume_from_checkpoint`: None
|
| 372 |
+
- `hub_model_id`: None
|
| 373 |
+
- `hub_strategy`: every_save
|
| 374 |
+
- `hub_private_repo`: None
|
| 375 |
+
- `hub_always_push`: False
|
| 376 |
+
- `gradient_checkpointing`: False
|
| 377 |
+
- `gradient_checkpointing_kwargs`: None
|
| 378 |
+
- `include_inputs_for_metrics`: False
|
| 379 |
+
- `include_for_metrics`: []
|
| 380 |
+
- `eval_do_concat_batches`: True
|
| 381 |
+
- `fp16_backend`: auto
|
| 382 |
+
- `push_to_hub_model_id`: None
|
| 383 |
+
- `push_to_hub_organization`: None
|
| 384 |
+
- `mp_parameters`:
|
| 385 |
+
- `auto_find_batch_size`: False
|
| 386 |
+
- `full_determinism`: False
|
| 387 |
+
- `torchdynamo`: None
|
| 388 |
+
- `ray_scope`: last
|
| 389 |
+
- `ddp_timeout`: 1800
|
| 390 |
+
- `torch_compile`: False
|
| 391 |
+
- `torch_compile_backend`: None
|
| 392 |
+
- `torch_compile_mode`: None
|
| 393 |
+
- `dispatch_batches`: None
|
| 394 |
+
- `split_batches`: None
|
| 395 |
+
- `include_tokens_per_second`: False
|
| 396 |
+
- `include_num_input_tokens_seen`: False
|
| 397 |
+
- `neftune_noise_alpha`: None
|
| 398 |
+
- `optim_target_modules`: None
|
| 399 |
+
- `batch_eval_metrics`: False
|
| 400 |
+
- `eval_on_start`: False
|
| 401 |
+
- `use_liger_kernel`: False
|
| 402 |
+
- `eval_use_gather_object`: False
|
| 403 |
+
- `average_tokens_across_devices`: False
|
| 404 |
+
- `prompts`: None
|
| 405 |
+
- `batch_sampler`: batch_sampler
|
| 406 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 407 |
+
|
| 408 |
+
</details>
|
| 409 |
+
|
| 410 |
+
### Training Logs
|
| 411 |
+
<details><summary>Click to expand</summary>
|
| 412 |
+
|
| 413 |
+
| Epoch | Step | Training Loss |
|
| 414 |
+
|:------:|:----:|:-------------:|
|
| 415 |
+
| 0.0025 | 1 | 4.9684 |
|
| 416 |
+
| 0.0051 | 2 | 4.6956 |
|
| 417 |
+
| 0.0076 | 3 | 4.5076 |
|
| 418 |
+
| 0.0102 | 4 | 4.3723 |
|
| 419 |
+
| 0.0127 | 5 | 4.3305 |
|
| 420 |
+
| 0.0153 | 6 | 4.0355 |
|
| 421 |
+
| 0.0178 | 7 | 3.7886 |
|
| 422 |
+
| 0.0204 | 8 | 3.6133 |
|
| 423 |
+
| 0.0229 | 9 | 3.2395 |
|
| 424 |
+
| 0.0254 | 10 | 3.1481 |
|
| 425 |
+
| 0.0280 | 11 | 2.7444 |
|
| 426 |
+
| 0.0305 | 12 | 2.4946 |
|
| 427 |
+
| 0.0331 | 13 | 2.333 |
|
| 428 |
+
| 0.0356 | 14 | 2.2471 |
|
| 429 |
+
| 0.0382 | 15 | 1.9117 |
|
| 430 |
+
| 0.0407 | 16 | 1.6753 |
|
| 431 |
+
| 0.0433 | 17 | 1.2413 |
|
| 432 |
+
| 0.0458 | 18 | 1.1201 |
|
| 433 |
+
| 0.0483 | 19 | 1.0335 |
|
| 434 |
+
| 0.0509 | 20 | 1.0583 |
|
| 435 |
+
| 0.0534 | 21 | 1.067 |
|
| 436 |
+
| 0.0560 | 22 | 0.7056 |
|
| 437 |
+
| 0.0585 | 23 | 0.761 |
|
| 438 |
+
| 0.0611 | 24 | 0.5501 |
|
| 439 |
+
| 0.0636 | 25 | 0.6486 |
|
| 440 |
+
| 0.0662 | 26 | 0.4639 |
|
| 441 |
+
| 0.0687 | 27 | 0.3885 |
|
| 442 |
+
| 0.0712 | 28 | 0.4982 |
|
| 443 |
+
| 0.0738 | 29 | 0.4784 |
|
| 444 |
+
| 0.0763 | 30 | 0.5189 |
|
| 445 |
+
| 0.0789 | 31 | 0.4824 |
|
| 446 |
+
| 0.0814 | 32 | 0.4183 |
|
| 447 |
+
| 0.0840 | 33 | 0.4945 |
|
| 448 |
+
| 0.0865 | 34 | 0.2579 |
|
| 449 |
+
| 0.0891 | 35 | 0.3312 |
|
| 450 |
+
| 0.0916 | 36 | 0.4035 |
|
| 451 |
+
| 0.0941 | 37 | 0.305 |
|
| 452 |
+
| 0.0967 | 38 | 0.2898 |
|
| 453 |
+
| 0.0992 | 39 | 0.2899 |
|
| 454 |
+
| 0.1018 | 40 | 0.2713 |
|
| 455 |
+
| 0.1043 | 41 | 0.3017 |
|
| 456 |
+
| 0.1069 | 42 | 0.2395 |
|
| 457 |
+
| 0.1094 | 43 | 0.1548 |
|
| 458 |
+
| 0.1120 | 44 | 0.2468 |
|
| 459 |
+
| 0.1145 | 45 | 0.1876 |
|
| 460 |
+
| 0.1170 | 46 | 0.2322 |
|
| 461 |
+
| 0.1196 | 47 | 0.2823 |
|
| 462 |
+
| 0.1221 | 48 | 0.2158 |
|
| 463 |
+
| 0.1247 | 49 | 0.2679 |
|
| 464 |
+
| 0.1272 | 50 | 0.273 |
|
| 465 |
+
| 0.1298 | 51 | 0.2876 |
|
| 466 |
+
| 0.1323 | 52 | 0.197 |
|
| 467 |
+
| 0.1349 | 53 | 0.1282 |
|
| 468 |
+
| 0.1374 | 54 | 0.3355 |
|
| 469 |
+
| 0.1399 | 55 | 0.1941 |
|
| 470 |
+
| 0.1425 | 56 | 0.1873 |
|
| 471 |
+
| 0.1450 | 57 | 0.2288 |
|
| 472 |
+
| 0.1476 | 58 | 0.2802 |
|
| 473 |
+
| 0.1501 | 59 | 0.2087 |
|
| 474 |
+
| 0.1527 | 60 | 0.2239 |
|
| 475 |
+
| 0.1552 | 61 | 0.225 |
|
| 476 |
+
| 0.1578 | 62 | 0.1582 |
|
| 477 |
+
| 0.1603 | 63 | 0.1972 |
|
| 478 |
+
| 0.1628 | 64 | 0.1632 |
|
| 479 |
+
| 0.1654 | 65 | 0.2101 |
|
| 480 |
+
| 0.1679 | 66 | 0.2084 |
|
| 481 |
+
| 0.1705 | 67 | 0.1499 |
|
| 482 |
+
| 0.1730 | 68 | 0.1467 |
|
| 483 |
+
| 0.1756 | 69 | 0.1428 |
|
| 484 |
+
| 0.1781 | 70 | 0.2298 |
|
| 485 |
+
| 0.1807 | 71 | 0.1883 |
|
| 486 |
+
| 0.1832 | 72 | 0.22 |
|
| 487 |
+
| 0.1858 | 73 | 0.1988 |
|
| 488 |
+
| 0.1883 | 74 | 0.2091 |
|
| 489 |
+
| 0.1908 | 75 | 0.1948 |
|
| 490 |
+
| 0.1934 | 76 | 0.1348 |
|
| 491 |
+
| 0.1959 | 77 | 0.112 |
|
| 492 |
+
| 0.1985 | 78 | 0.1474 |
|
| 493 |
+
| 0.2010 | 79 | 0.1949 |
|
| 494 |
+
| 0.2036 | 80 | 0.1664 |
|
| 495 |
+
| 0.2061 | 81 | 0.1807 |
|
| 496 |
+
| 0.2087 | 82 | 0.1403 |
|
| 497 |
+
| 0.2112 | 83 | 0.1225 |
|
| 498 |
+
| 0.2137 | 84 | 0.1919 |
|
| 499 |
+
| 0.2163 | 85 | 0.1403 |
|
| 500 |
+
| 0.2188 | 86 | 0.1402 |
|
| 501 |
+
| 0.2214 | 87 | 0.0981 |
|
| 502 |
+
| 0.2239 | 88 | 0.1214 |
|
| 503 |
+
| 0.2265 | 89 | 0.1755 |
|
| 504 |
+
| 0.2290 | 90 | 0.1509 |
|
| 505 |
+
| 0.2316 | 91 | 0.1551 |
|
| 506 |
+
| 0.2341 | 92 | 0.176 |
|
| 507 |
+
| 0.2366 | 93 | 0.1648 |
|
| 508 |
+
| 0.2392 | 94 | 0.1622 |
|
| 509 |
+
| 0.2417 | 95 | 0.1372 |
|
| 510 |
+
| 0.2443 | 96 | 0.1016 |
|
| 511 |
+
| 0.2468 | 97 | 0.1134 |
|
| 512 |
+
| 0.2494 | 98 | 0.1436 |
|
| 513 |
+
| 0.2519 | 99 | 0.1478 |
|
| 514 |
+
| 0.2545 | 100 | 0.2065 |
|
| 515 |
+
| 0.2570 | 101 | 0.1901 |
|
| 516 |
+
| 0.2595 | 102 | 0.1859 |
|
| 517 |
+
| 0.2621 | 103 | 0.212 |
|
| 518 |
+
| 0.2646 | 104 | 0.2179 |
|
| 519 |
+
| 0.2672 | 105 | 0.2471 |
|
| 520 |
+
| 0.2697 | 106 | 0.1769 |
|
| 521 |
+
| 0.2723 | 107 | 0.1593 |
|
| 522 |
+
| 0.2748 | 108 | 0.204 |
|
| 523 |
+
| 0.2774 | 109 | 0.1496 |
|
| 524 |
+
| 0.2799 | 110 | 0.1212 |
|
| 525 |
+
| 0.2824 | 111 | 0.1282 |
|
| 526 |
+
| 0.2850 | 112 | 0.1126 |
|
| 527 |
+
| 0.2875 | 113 | 0.1254 |
|
| 528 |
+
| 0.2901 | 114 | 0.1422 |
|
| 529 |
+
| 0.2926 | 115 | 0.1266 |
|
| 530 |
+
| 0.2952 | 116 | 0.1305 |
|
| 531 |
+
| 0.2977 | 117 | 0.1283 |
|
| 532 |
+
| 0.3003 | 118 | 0.0737 |
|
| 533 |
+
| 0.3028 | 119 | 0.1237 |
|
| 534 |
+
| 0.3053 | 120 | 0.1185 |
|
| 535 |
+
| 0.3079 | 121 | 0.0891 |
|
| 536 |
+
| 0.3104 | 122 | 0.2312 |
|
| 537 |
+
| 0.3130 | 123 | 0.2384 |
|
| 538 |
+
| 0.3155 | 124 | 0.155 |
|
| 539 |
+
| 0.3181 | 125 | 0.1118 |
|
| 540 |
+
| 0.3206 | 126 | 0.1575 |
|
| 541 |
+
| 0.3232 | 127 | 0.2115 |
|
| 542 |
+
| 0.3257 | 128 | 0.098 |
|
| 543 |
+
| 0.3282 | 129 | 0.1811 |
|
| 544 |
+
| 0.3308 | 130 | 0.1704 |
|
| 545 |
+
| 0.3333 | 131 | 0.1494 |
|
| 546 |
+
| 0.3359 | 132 | 0.1531 |
|
| 547 |
+
| 0.3384 | 133 | 0.1032 |
|
| 548 |
+
| 0.3410 | 134 | 0.1137 |
|
| 549 |
+
| 0.3435 | 135 | 0.1271 |
|
| 550 |
+
| 0.3461 | 136 | 0.1591 |
|
| 551 |
+
| 0.3486 | 137 | 0.1586 |
|
| 552 |
+
| 0.3511 | 138 | 0.1292 |
|
| 553 |
+
| 0.3537 | 139 | 0.1115 |
|
| 554 |
+
| 0.3562 | 140 | 0.1337 |
|
| 555 |
+
| 0.3588 | 141 | 0.1298 |
|
| 556 |
+
| 0.3613 | 142 | 0.1649 |
|
| 557 |
+
| 0.3639 | 143 | 0.0855 |
|
| 558 |
+
| 0.3664 | 144 | 0.1124 |
|
| 559 |
+
| 0.3690 | 145 | 0.0764 |
|
| 560 |
+
| 0.3715 | 146 | 0.1402 |
|
| 561 |
+
| 0.3740 | 147 | 0.137 |
|
| 562 |
+
| 0.3766 | 148 | 0.0736 |
|
| 563 |
+
| 0.3791 | 149 | 0.0772 |
|
| 564 |
+
| 0.3817 | 150 | 0.1689 |
|
| 565 |
+
| 0.3842 | 151 | 0.1371 |
|
| 566 |
+
| 0.3868 | 152 | 0.1195 |
|
| 567 |
+
| 0.3893 | 153 | 0.1536 |
|
| 568 |
+
| 0.3919 | 154 | 0.1421 |
|
| 569 |
+
| 0.3944 | 155 | 0.1222 |
|
| 570 |
+
| 0.3969 | 156 | 0.1121 |
|
| 571 |
+
| 0.3995 | 157 | 0.0892 |
|
| 572 |
+
| 0.4020 | 158 | 0.1516 |
|
| 573 |
+
| 0.4046 | 159 | 0.1071 |
|
| 574 |
+
| 0.4071 | 160 | 0.1593 |
|
| 575 |
+
| 0.4097 | 161 | 0.1078 |
|
| 576 |
+
| 0.4122 | 162 | 0.1112 |
|
| 577 |
+
| 0.4148 | 163 | 0.2101 |
|
| 578 |
+
| 0.4173 | 164 | 0.2096 |
|
| 579 |
+
| 0.4198 | 165 | 0.1337 |
|
| 580 |
+
| 0.4224 | 166 | 0.1501 |
|
| 581 |
+
| 0.4249 | 167 | 0.0989 |
|
| 582 |
+
| 0.4275 | 168 | 0.0992 |
|
| 583 |
+
| 0.4300 | 169 | 0.0926 |
|
| 584 |
+
| 0.4326 | 170 | 0.0692 |
|
| 585 |
+
| 0.4351 | 171 | 0.1235 |
|
| 586 |
+
| 0.4377 | 172 | 0.1029 |
|
| 587 |
+
| 0.4402 | 173 | 0.1351 |
|
| 588 |
+
| 0.4427 | 174 | 0.0899 |
|
| 589 |
+
| 0.4453 | 175 | 0.0844 |
|
| 590 |
+
| 0.4478 | 176 | 0.1167 |
|
| 591 |
+
| 0.4504 | 177 | 0.1355 |
|
| 592 |
+
| 0.4529 | 178 | 0.092 |
|
| 593 |
+
| 0.4555 | 179 | 0.1005 |
|
| 594 |
+
| 0.4580 | 180 | 0.0891 |
|
| 595 |
+
| 0.4606 | 181 | 0.1396 |
|
| 596 |
+
| 0.4631 | 182 | 0.1024 |
|
| 597 |
+
| 0.4656 | 183 | 0.1325 |
|
| 598 |
+
| 0.4682 | 184 | 0.1061 |
|
| 599 |
+
| 0.4707 | 185 | 0.1657 |
|
| 600 |
+
| 0.4733 | 186 | 0.1141 |
|
| 601 |
+
| 0.4758 | 187 | 0.149 |
|
| 602 |
+
| 0.4784 | 188 | 0.1125 |
|
| 603 |
+
| 0.4809 | 189 | 0.1524 |
|
| 604 |
+
| 0.4835 | 190 | 0.1129 |
|
| 605 |
+
| 0.4860 | 191 | 0.1089 |
|
| 606 |
+
| 0.4885 | 192 | 0.1333 |
|
| 607 |
+
| 0.4911 | 193 | 0.1377 |
|
| 608 |
+
| 0.4936 | 194 | 0.0547 |
|
| 609 |
+
| 0.4962 | 195 | 0.1057 |
|
| 610 |
+
| 0.4987 | 196 | 0.1321 |
|
| 611 |
+
| 0.5013 | 197 | 0.0979 |
|
| 612 |
+
| 0.5038 | 198 | 0.1706 |
|
| 613 |
+
| 0.5064 | 199 | 0.1559 |
|
| 614 |
+
| 0.5089 | 200 | 0.1111 |
|
| 615 |
+
| 0.5115 | 201 | 0.1258 |
|
| 616 |
+
| 0.5140 | 202 | 0.0816 |
|
| 617 |
+
| 0.5165 | 203 | 0.1362 |
|
| 618 |
+
| 0.5191 | 204 | 0.1604 |
|
| 619 |
+
| 0.5216 | 205 | 0.1104 |
|
| 620 |
+
| 0.5242 | 206 | 0.1494 |
|
| 621 |
+
| 0.5267 | 207 | 0.1402 |
|
| 622 |
+
| 0.5293 | 208 | 0.1282 |
|
| 623 |
+
| 0.5318 | 209 | 0.1543 |
|
| 624 |
+
| 0.5344 | 210 | 0.1576 |
|
| 625 |
+
| 0.5369 | 211 | 0.2071 |
|
| 626 |
+
| 0.5394 | 212 | 0.1248 |
|
| 627 |
+
| 0.5420 | 213 | 0.1237 |
|
| 628 |
+
| 0.5445 | 214 | 0.0592 |
|
| 629 |
+
| 0.5471 | 215 | 0.1769 |
|
| 630 |
+
| 0.5496 | 216 | 0.1118 |
|
| 631 |
+
| 0.5522 | 217 | 0.1608 |
|
| 632 |
+
| 0.5547 | 218 | 0.1192 |
|
| 633 |
+
| 0.5573 | 219 | 0.0551 |
|
| 634 |
+
| 0.5598 | 220 | 0.1401 |
|
| 635 |
+
| 0.5623 | 221 | 0.2046 |
|
| 636 |
+
| 0.5649 | 222 | 0.1273 |
|
| 637 |
+
| 0.5674 | 223 | 0.1319 |
|
| 638 |
+
| 0.5700 | 224 | 0.1518 |
|
| 639 |
+
| 0.5725 | 225 | 0.0929 |
|
| 640 |
+
| 0.5751 | 226 | 0.1262 |
|
| 641 |
+
| 0.5776 | 227 | 0.1566 |
|
| 642 |
+
| 0.5802 | 228 | 0.1128 |
|
| 643 |
+
| 0.5827 | 229 | 0.1467 |
|
| 644 |
+
| 0.5852 | 230 | 0.1513 |
|
| 645 |
+
| 0.5878 | 231 | 0.1989 |
|
| 646 |
+
| 0.5903 | 232 | 0.0594 |
|
| 647 |
+
| 0.5929 | 233 | 0.0838 |
|
| 648 |
+
| 0.5954 | 234 | 0.0711 |
|
| 649 |
+
| 0.5980 | 235 | 0.0854 |
|
| 650 |
+
| 0.6005 | 236 | 0.1775 |
|
| 651 |
+
| 0.6031 | 237 | 0.118 |
|
| 652 |
+
| 0.6056 | 238 | 0.1297 |
|
| 653 |
+
| 0.6081 | 239 | 0.1092 |
|
| 654 |
+
| 0.6107 | 240 | 0.1469 |
|
| 655 |
+
| 0.6132 | 241 | 0.1203 |
|
| 656 |
+
| 0.6158 | 242 | 0.0901 |
|
| 657 |
+
| 0.6183 | 243 | 0.1179 |
|
| 658 |
+
| 0.6209 | 244 | 0.0864 |
|
| 659 |
+
| 0.6234 | 245 | 0.1277 |
|
| 660 |
+
| 0.6260 | 246 | 0.1313 |
|
| 661 |
+
| 0.6285 | 247 | 0.089 |
|
| 662 |
+
| 0.6310 | 248 | 0.0727 |
|
| 663 |
+
| 0.6336 | 249 | 0.0556 |
|
| 664 |
+
| 0.6361 | 250 | 0.0782 |
|
| 665 |
+
| 0.6387 | 251 | 0.0869 |
|
| 666 |
+
| 0.6412 | 252 | 0.0988 |
|
| 667 |
+
| 0.6438 | 253 | 0.0818 |
|
| 668 |
+
| 0.6463 | 254 | 0.1013 |
|
| 669 |
+
| 0.6489 | 255 | 0.096 |
|
| 670 |
+
| 0.6514 | 256 | 0.0622 |
|
| 671 |
+
| 0.6539 | 257 | 0.1561 |
|
| 672 |
+
| 0.6565 | 258 | 0.1282 |
|
| 673 |
+
| 0.6590 | 259 | 0.1087 |
|
| 674 |
+
| 0.6616 | 260 | 0.1312 |
|
| 675 |
+
| 0.6641 | 261 | 0.1343 |
|
| 676 |
+
| 0.6667 | 262 | 0.0955 |
|
| 677 |
+
| 0.6692 | 263 | 0.0844 |
|
| 678 |
+
| 0.6718 | 264 | 0.1209 |
|
| 679 |
+
| 0.6743 | 265 | 0.0858 |
|
| 680 |
+
| 0.6768 | 266 | 0.0714 |
|
| 681 |
+
| 0.6794 | 267 | 0.1431 |
|
| 682 |
+
| 0.6819 | 268 | 0.0632 |
|
| 683 |
+
| 0.6845 | 269 | 0.115 |
|
| 684 |
+
| 0.6870 | 270 | 0.1115 |
|
| 685 |
+
| 0.6896 | 271 | 0.1239 |
|
| 686 |
+
| 0.6921 | 272 | 0.1206 |
|
| 687 |
+
| 0.6947 | 273 | 0.1894 |
|
| 688 |
+
| 0.6972 | 274 | 0.0755 |
|
| 689 |
+
| 0.6997 | 275 | 0.0709 |
|
| 690 |
+
| 0.7023 | 276 | 0.1304 |
|
| 691 |
+
| 0.7048 | 277 | 0.1476 |
|
| 692 |
+
| 0.7074 | 278 | 0.1497 |
|
| 693 |
+
| 0.7099 | 279 | 0.113 |
|
| 694 |
+
| 0.7125 | 280 | 0.1676 |
|
| 695 |
+
| 0.7150 | 281 | 0.0999 |
|
| 696 |
+
| 0.7176 | 282 | 0.2044 |
|
| 697 |
+
| 0.7201 | 283 | 0.1125 |
|
| 698 |
+
| 0.7226 | 284 | 0.0956 |
|
| 699 |
+
| 0.7252 | 285 | 0.0956 |
|
| 700 |
+
| 0.7277 | 286 | 0.0771 |
|
| 701 |
+
| 0.7303 | 287 | 0.0712 |
|
| 702 |
+
| 0.7328 | 288 | 0.0525 |
|
| 703 |
+
| 0.7354 | 289 | 0.0689 |
|
| 704 |
+
| 0.7379 | 290 | 0.0964 |
|
| 705 |
+
| 0.7405 | 291 | 0.1068 |
|
| 706 |
+
| 0.7430 | 292 | 0.0536 |
|
| 707 |
+
| 0.7455 | 293 | 0.0861 |
|
| 708 |
+
| 0.7481 | 294 | 0.0813 |
|
| 709 |
+
| 0.7506 | 295 | 0.0885 |
|
| 710 |
+
| 0.7532 | 296 | 0.1083 |
|
| 711 |
+
| 0.7557 | 297 | 0.1124 |
|
| 712 |
+
| 0.7583 | 298 | 0.1095 |
|
| 713 |
+
| 0.7608 | 299 | 0.08 |
|
| 714 |
+
| 0.7634 | 300 | 0.1081 |
|
| 715 |
+
| 0.7659 | 301 | 0.0719 |
|
| 716 |
+
| 0.7684 | 302 | 0.0933 |
|
| 717 |
+
| 0.7710 | 303 | 0.1143 |
|
| 718 |
+
| 0.7735 | 304 | 0.065 |
|
| 719 |
+
| 0.7761 | 305 | 0.1276 |
|
| 720 |
+
| 0.7786 | 306 | 0.102 |
|
| 721 |
+
| 0.7812 | 307 | 0.186 |
|
| 722 |
+
| 0.7837 | 308 | 0.0778 |
|
| 723 |
+
| 0.7863 | 309 | 0.1419 |
|
| 724 |
+
| 0.7888 | 310 | 0.0895 |
|
| 725 |
+
| 0.7913 | 311 | 0.1154 |
|
| 726 |
+
| 0.7939 | 312 | 0.1037 |
|
| 727 |
+
| 0.7964 | 313 | 0.0711 |
|
| 728 |
+
| 0.7990 | 314 | 0.1559 |
|
| 729 |
+
| 0.8015 | 315 | 0.0755 |
|
| 730 |
+
| 0.8041 | 316 | 0.0799 |
|
| 731 |
+
| 0.8066 | 317 | 0.1137 |
|
| 732 |
+
| 0.8092 | 318 | 0.0837 |
|
| 733 |
+
| 0.8117 | 319 | 0.1052 |
|
| 734 |
+
| 0.8142 | 320 | 0.0846 |
|
| 735 |
+
| 0.8168 | 321 | 0.0715 |
|
| 736 |
+
| 0.8193 | 322 | 0.0923 |
|
| 737 |
+
| 0.8219 | 323 | 0.1397 |
|
| 738 |
+
| 0.8244 | 324 | 0.0899 |
|
| 739 |
+
| 0.8270 | 325 | 0.1414 |
|
| 740 |
+
| 0.8295 | 326 | 0.0422 |
|
| 741 |
+
| 0.8321 | 327 | 0.0748 |
|
| 742 |
+
| 0.8346 | 328 | 0.0739 |
|
| 743 |
+
| 0.8372 | 329 | 0.0855 |
|
| 744 |
+
| 0.8397 | 330 | 0.071 |
|
| 745 |
+
| 0.8422 | 331 | 0.0557 |
|
| 746 |
+
| 0.8448 | 332 | 0.1055 |
|
| 747 |
+
| 0.8473 | 333 | 0.096 |
|
| 748 |
+
| 0.8499 | 334 | 0.1083 |
|
| 749 |
+
| 0.8524 | 335 | 0.133 |
|
| 750 |
+
| 0.8550 | 336 | 0.1308 |
|
| 751 |
+
| 0.8575 | 337 | 0.0661 |
|
| 752 |
+
| 0.8601 | 338 | 0.0974 |
|
| 753 |
+
| 0.8626 | 339 | 0.1027 |
|
| 754 |
+
| 0.8651 | 340 | 0.1068 |
|
| 755 |
+
| 0.8677 | 341 | 0.1653 |
|
| 756 |
+
| 0.8702 | 342 | 0.097 |
|
| 757 |
+
| 0.8728 | 343 | 0.0845 |
|
| 758 |
+
| 0.8753 | 344 | 0.0546 |
|
| 759 |
+
| 0.8779 | 345 | 0.1273 |
|
| 760 |
+
| 0.8804 | 346 | 0.0982 |
|
| 761 |
+
| 0.8830 | 347 | 0.0893 |
|
| 762 |
+
| 0.8855 | 348 | 0.1222 |
|
| 763 |
+
| 0.8880 | 349 | 0.1072 |
|
| 764 |
+
| 0.8906 | 350 | 0.1254 |
|
| 765 |
+
| 0.8931 | 351 | 0.0679 |
|
| 766 |
+
| 0.8957 | 352 | 0.0995 |
|
| 767 |
+
| 0.8982 | 353 | 0.0878 |
|
| 768 |
+
| 0.9008 | 354 | 0.0564 |
|
| 769 |
+
| 0.9033 | 355 | 0.113 |
|
| 770 |
+
| 0.9059 | 356 | 0.0567 |
|
| 771 |
+
| 0.9084 | 357 | 0.0968 |
|
| 772 |
+
| 0.9109 | 358 | 0.1023 |
|
| 773 |
+
| 0.9135 | 359 | 0.1106 |
|
| 774 |
+
| 0.9160 | 360 | 0.091 |
|
| 775 |
+
| 0.9186 | 361 | 0.0988 |
|
| 776 |
+
| 0.9211 | 362 | 0.1374 |
|
| 777 |
+
| 0.9237 | 363 | 0.0855 |
|
| 778 |
+
| 0.9262 | 364 | 0.0824 |
|
| 779 |
+
| 0.9288 | 365 | 0.058 |
|
| 780 |
+
| 0.9313 | 366 | 0.0776 |
|
| 781 |
+
| 0.9338 | 367 | 0.1195 |
|
| 782 |
+
| 0.9364 | 368 | 0.0506 |
|
| 783 |
+
| 0.9389 | 369 | 0.0893 |
|
| 784 |
+
| 0.9415 | 370 | 0.1145 |
|
| 785 |
+
| 0.9440 | 371 | 0.0695 |
|
| 786 |
+
| 0.9466 | 372 | 0.0805 |
|
| 787 |
+
| 0.9491 | 373 | 0.0824 |
|
| 788 |
+
| 0.9517 | 374 | 0.0841 |
|
| 789 |
+
| 0.9542 | 375 | 0.0919 |
|
| 790 |
+
| 0.9567 | 376 | 0.064 |
|
| 791 |
+
| 0.9593 | 377 | 0.2194 |
|
| 792 |
+
| 0.9618 | 378 | 0.1165 |
|
| 793 |
+
| 0.9644 | 379 | 0.0888 |
|
| 794 |
+
| 0.9669 | 380 | 0.0826 |
|
| 795 |
+
| 0.9695 | 381 | 0.0687 |
|
| 796 |
+
| 0.9720 | 382 | 0.0933 |
|
| 797 |
+
| 0.9746 | 383 | 0.1337 |
|
| 798 |
+
| 0.9771 | 384 | 0.0738 |
|
| 799 |
+
| 0.9796 | 385 | 0.0749 |
|
| 800 |
+
| 0.9822 | 386 | 0.0742 |
|
| 801 |
+
| 0.9847 | 387 | 0.1111 |
|
| 802 |
+
| 0.9873 | 388 | 0.093 |
|
| 803 |
+
| 0.9898 | 389 | 0.0877 |
|
| 804 |
+
| 0.9924 | 390 | 0.0637 |
|
| 805 |
+
| 0.9949 | 391 | 0.0897 |
|
| 806 |
+
| 0.9975 | 392 | 0.0818 |
|
| 807 |
+
| 1.0 | 393 | 0.0362 |
|
| 808 |
+
| 1.0025 | 394 | 0.0561 |
|
| 809 |
+
| 1.0051 | 395 | 0.0847 |
|
| 810 |
+
| 1.0076 | 396 | 0.0752 |
|
| 811 |
+
| 1.0102 | 397 | 0.0951 |
|
| 812 |
+
| 1.0127 | 398 | 0.1069 |
|
| 813 |
+
| 1.0153 | 399 | 0.0553 |
|
| 814 |
+
| 1.0178 | 400 | 0.0929 |
|
| 815 |
+
| 1.0204 | 401 | 0.0876 |
|
| 816 |
+
| 1.0229 | 402 | 0.0381 |
|
| 817 |
+
| 1.0254 | 403 | 0.1074 |
|
| 818 |
+
| 1.0280 | 404 | 0.0763 |
|
| 819 |
+
| 1.0305 | 405 | 0.0881 |
|
| 820 |
+
| 1.0331 | 406 | 0.0481 |
|
| 821 |
+
| 1.0356 | 407 | 0.1398 |
|
| 822 |
+
| 1.0382 | 408 | 0.09 |
|
| 823 |
+
| 1.0407 | 409 | 0.1045 |
|
| 824 |
+
| 1.0433 | 410 | 0.088 |
|
| 825 |
+
| 1.0458 | 411 | 0.0751 |
|
| 826 |
+
| 1.0483 | 412 | 0.0781 |
|
| 827 |
+
| 1.0509 | 413 | 0.0844 |
|
| 828 |
+
| 1.0534 | 414 | 0.0949 |
|
| 829 |
+
| 1.0560 | 415 | 0.0467 |
|
| 830 |
+
| 1.0585 | 416 | 0.1159 |
|
| 831 |
+
| 1.0611 | 417 | 0.0511 |
|
| 832 |
+
| 1.0636 | 418 | 0.0659 |
|
| 833 |
+
| 1.0662 | 419 | 0.043 |
|
| 834 |
+
| 1.0687 | 420 | 0.0468 |
|
| 835 |
+
| 1.0712 | 421 | 0.068 |
|
| 836 |
+
| 1.0738 | 422 | 0.1022 |
|
| 837 |
+
| 1.0763 | 423 | 0.1096 |
|
| 838 |
+
| 1.0789 | 424 | 0.1113 |
|
| 839 |
+
| 1.0814 | 425 | 0.1219 |
|
| 840 |
+
| 1.0840 | 426 | 0.0852 |
|
| 841 |
+
| 1.0865 | 427 | 0.0413 |
|
| 842 |
+
| 1.0891 | 428 | 0.0797 |
|
| 843 |
+
| 1.0916 | 429 | 0.1048 |
|
| 844 |
+
| 1.0941 | 430 | 0.0494 |
|
| 845 |
+
| 1.0967 | 431 | 0.079 |
|
| 846 |
+
| 1.0992 | 432 | 0.0698 |
|
| 847 |
+
| 1.1018 | 433 | 0.0908 |
|
| 848 |
+
| 1.1043 | 434 | 0.0993 |
|
| 849 |
+
| 1.1069 | 435 | 0.0397 |
|
| 850 |
+
| 1.1094 | 436 | 0.0312 |
|
| 851 |
+
| 1.1120 | 437 | 0.089 |
|
| 852 |
+
| 1.1145 | 438 | 0.0318 |
|
| 853 |
+
| 1.1170 | 439 | 0.0356 |
|
| 854 |
+
| 1.1196 | 440 | 0.0588 |
|
| 855 |
+
| 1.1221 | 441 | 0.0311 |
|
| 856 |
+
| 1.1247 | 442 | 0.0578 |
|
| 857 |
+
| 1.1272 | 443 | 0.1313 |
|
| 858 |
+
| 1.1298 | 444 | 0.0897 |
|
| 859 |
+
| 1.1323 | 445 | 0.0798 |
|
| 860 |
+
| 1.1349 | 446 | 0.0326 |
|
| 861 |
+
| 1.1374 | 447 | 0.143 |
|
| 862 |
+
| 1.1399 | 448 | 0.0661 |
|
| 863 |
+
| 1.1425 | 449 | 0.0433 |
|
| 864 |
+
| 1.1450 | 450 | 0.0782 |
|
| 865 |
+
| 1.1476 | 451 | 0.08 |
|
| 866 |
+
| 1.1501 | 452 | 0.0505 |
|
| 867 |
+
| 1.1527 | 453 | 0.0542 |
|
| 868 |
+
| 1.1552 | 454 | 0.0755 |
|
| 869 |
+
| 1.1578 | 455 | 0.0315 |
|
| 870 |
+
| 1.1603 | 456 | 0.0667 |
|
| 871 |
+
| 1.1628 | 457 | 0.0329 |
|
| 872 |
+
| 1.1654 | 458 | 0.0791 |
|
| 873 |
+
| 1.1679 | 459 | 0.0698 |
|
| 874 |
+
| 1.1705 | 460 | 0.0194 |
|
| 875 |
+
| 1.1730 | 461 | 0.0501 |
|
| 876 |
+
| 1.1756 | 462 | 0.0449 |
|
| 877 |
+
| 1.1781 | 463 | 0.0903 |
|
| 878 |
+
| 1.1807 | 464 | 0.0503 |
|
| 879 |
+
| 1.1832 | 465 | 0.0664 |
|
| 880 |
+
| 1.1858 | 466 | 0.0457 |
|
| 881 |
+
| 1.1883 | 467 | 0.0568 |
|
| 882 |
+
| 1.1908 | 468 | 0.064 |
|
| 883 |
+
| 1.1934 | 469 | 0.0253 |
|
| 884 |
+
| 1.1959 | 470 | 0.046 |
|
| 885 |
+
| 1.1985 | 471 | 0.0279 |
|
| 886 |
+
| 1.2010 | 472 | 0.0733 |
|
| 887 |
+
| 1.2036 | 473 | 0.0463 |
|
| 888 |
+
| 1.2061 | 474 | 0.07 |
|
| 889 |
+
| 1.2087 | 475 | 0.0281 |
|
| 890 |
+
| 1.2112 | 476 | 0.0373 |
|
| 891 |
+
| 1.2137 | 477 | 0.0738 |
|
| 892 |
+
| 1.2163 | 478 | 0.0412 |
|
| 893 |
+
| 1.2188 | 479 | 0.0545 |
|
| 894 |
+
| 1.2214 | 480 | 0.0247 |
|
| 895 |
+
| 1.2239 | 481 | 0.0293 |
|
| 896 |
+
| 1.2265 | 482 | 0.0845 |
|
| 897 |
+
| 1.2290 | 483 | 0.055 |
|
| 898 |
+
| 1.2316 | 484 | 0.072 |
|
| 899 |
+
| 1.2341 | 485 | 0.0481 |
|
| 900 |
+
| 1.2366 | 486 | 0.0443 |
|
| 901 |
+
| 1.2392 | 487 | 0.0807 |
|
| 902 |
+
| 1.2417 | 488 | 0.0421 |
|
| 903 |
+
| 1.2443 | 489 | 0.0237 |
|
| 904 |
+
| 1.2468 | 490 | 0.0189 |
|
| 905 |
+
| 1.2494 | 491 | 0.0604 |
|
| 906 |
+
| 1.2519 | 492 | 0.0428 |
|
| 907 |
+
| 1.2545 | 493 | 0.061 |
|
| 908 |
+
| 1.2570 | 494 | 0.0723 |
|
| 909 |
+
| 1.2595 | 495 | 0.0539 |
|
| 910 |
+
| 1.2621 | 496 | 0.0747 |
|
| 911 |
+
| 1.2646 | 497 | 0.0917 |
|
| 912 |
+
| 1.2672 | 498 | 0.1161 |
|
| 913 |
+
| 1.2697 | 499 | 0.087 |
|
| 914 |
+
| 1.2723 | 500 | 0.0616 |
|
| 915 |
+
| 1.2748 | 501 | 0.0756 |
|
| 916 |
+
| 1.2774 | 502 | 0.0674 |
|
| 917 |
+
| 1.2799 | 503 | 0.04 |
|
| 918 |
+
| 1.2824 | 504 | 0.0354 |
|
| 919 |
+
| 1.2850 | 505 | 0.0403 |
|
| 920 |
+
| 1.2875 | 506 | 0.0596 |
|
| 921 |
+
| 1.2901 | 507 | 0.0359 |
|
| 922 |
+
| 1.2926 | 508 | 0.0648 |
|
| 923 |
+
| 1.2952 | 509 | 0.0424 |
|
| 924 |
+
| 1.2977 | 510 | 0.0605 |
|
| 925 |
+
| 1.3003 | 511 | 0.0136 |
|
| 926 |
+
| 1.3028 | 512 | 0.0547 |
|
| 927 |
+
| 1.3053 | 513 | 0.0385 |
|
| 928 |
+
| 1.3079 | 514 | 0.0191 |
|
| 929 |
+
| 1.3104 | 515 | 0.1222 |
|
| 930 |
+
| 1.3130 | 516 | 0.0906 |
|
| 931 |
+
| 1.3155 | 517 | 0.0603 |
|
| 932 |
+
| 1.3181 | 518 | 0.0366 |
|
| 933 |
+
| 1.3206 | 519 | 0.0416 |
|
| 934 |
+
| 1.3232 | 520 | 0.0832 |
|
| 935 |
+
| 1.3257 | 521 | 0.0355 |
|
| 936 |
+
| 1.3282 | 522 | 0.0614 |
|
| 937 |
+
| 1.3308 | 523 | 0.0539 |
|
| 938 |
+
| 1.3333 | 524 | 0.0566 |
|
| 939 |
+
| 1.3359 | 525 | 0.0727 |
|
| 940 |
+
| 1.3384 | 526 | 0.0311 |
|
| 941 |
+
| 1.3410 | 527 | 0.0254 |
|
| 942 |
+
| 1.3435 | 528 | 0.0376 |
|
| 943 |
+
| 1.3461 | 529 | 0.0652 |
|
| 944 |
+
| 1.3486 | 530 | 0.0717 |
|
| 945 |
+
| 1.3511 | 531 | 0.0521 |
|
| 946 |
+
| 1.3537 | 532 | 0.0404 |
|
| 947 |
+
| 1.3562 | 533 | 0.041 |
|
| 948 |
+
| 1.3588 | 534 | 0.0435 |
|
| 949 |
+
| 1.3613 | 535 | 0.0842 |
|
| 950 |
+
| 1.3639 | 536 | 0.0203 |
|
| 951 |
+
| 1.3664 | 537 | 0.072 |
|
| 952 |
+
| 1.3690 | 538 | 0.0277 |
|
| 953 |
+
| 1.3715 | 539 | 0.0575 |
|
| 954 |
+
| 1.3740 | 540 | 0.0665 |
|
| 955 |
+
| 1.3766 | 541 | 0.024 |
|
| 956 |
+
| 1.3791 | 542 | 0.0202 |
|
| 957 |
+
| 1.3817 | 543 | 0.052 |
|
| 958 |
+
| 1.3842 | 544 | 0.0532 |
|
| 959 |
+
| 1.3868 | 545 | 0.0623 |
|
| 960 |
+
| 1.3893 | 546 | 0.0643 |
|
| 961 |
+
| 1.3919 | 547 | 0.0694 |
|
| 962 |
+
| 1.3944 | 548 | 0.0582 |
|
| 963 |
+
| 1.3969 | 549 | 0.0411 |
|
| 964 |
+
| 1.3995 | 550 | 0.0245 |
|
| 965 |
+
| 1.4020 | 551 | 0.0714 |
|
| 966 |
+
| 1.4046 | 552 | 0.0489 |
|
| 967 |
+
| 1.4071 | 553 | 0.0696 |
|
| 968 |
+
| 1.4097 | 554 | 0.0316 |
|
| 969 |
+
| 1.4122 | 555 | 0.0554 |
|
| 970 |
+
| 1.4148 | 556 | 0.097 |
|
| 971 |
+
| 1.4173 | 557 | 0.0665 |
|
| 972 |
+
| 1.4198 | 558 | 0.0578 |
|
| 973 |
+
| 1.4224 | 559 | 0.0746 |
|
| 974 |
+
| 1.4249 | 560 | 0.0347 |
|
| 975 |
+
| 1.4275 | 561 | 0.0471 |
|
| 976 |
+
| 1.4300 | 562 | 0.0237 |
|
| 977 |
+
| 1.4326 | 563 | 0.0269 |
|
| 978 |
+
| 1.4351 | 564 | 0.068 |
|
| 979 |
+
| 1.4377 | 565 | 0.0362 |
|
| 980 |
+
| 1.4402 | 566 | 0.059 |
|
| 981 |
+
| 1.4427 | 567 | 0.0321 |
|
| 982 |
+
| 1.4453 | 568 | 0.0469 |
|
| 983 |
+
| 1.4478 | 569 | 0.0445 |
|
| 984 |
+
| 1.4504 | 570 | 0.0804 |
|
| 985 |
+
| 1.4529 | 571 | 0.0387 |
|
| 986 |
+
| 1.4555 | 572 | 0.0358 |
|
| 987 |
+
| 1.4580 | 573 | 0.0322 |
|
| 988 |
+
| 1.4606 | 574 | 0.0673 |
|
| 989 |
+
| 1.4631 | 575 | 0.0302 |
|
| 990 |
+
| 1.4656 | 576 | 0.0612 |
|
| 991 |
+
| 1.4682 | 577 | 0.0553 |
|
| 992 |
+
| 1.4707 | 578 | 0.0998 |
|
| 993 |
+
| 1.4733 | 579 | 0.0396 |
|
| 994 |
+
| 1.4758 | 580 | 0.0764 |
|
| 995 |
+
| 1.4784 | 581 | 0.0427 |
|
| 996 |
+
| 1.4809 | 582 | 0.0785 |
|
| 997 |
+
| 1.4835 | 583 | 0.0419 |
|
| 998 |
+
| 1.4860 | 584 | 0.0584 |
|
| 999 |
+
| 1.4885 | 585 | 0.0437 |
|
| 1000 |
+
| 1.4911 | 586 | 0.0561 |
|
| 1001 |
+
| 1.4936 | 587 | 0.0131 |
|
| 1002 |
+
| 1.4962 | 588 | 0.0472 |
|
| 1003 |
+
| 1.4987 | 589 | 0.0479 |
|
| 1004 |
+
| 1.5013 | 590 | 0.0477 |
|
| 1005 |
+
| 1.5038 | 591 | 0.0745 |
|
| 1006 |
+
| 1.5064 | 592 | 0.0918 |
|
| 1007 |
+
| 1.5089 | 593 | 0.041 |
|
| 1008 |
+
| 1.5115 | 594 | 0.0463 |
|
| 1009 |
+
| 1.5140 | 595 | 0.0227 |
|
| 1010 |
+
| 1.5165 | 596 | 0.0427 |
|
| 1011 |
+
| 1.5191 | 597 | 0.0754 |
|
| 1012 |
+
| 1.5216 | 598 | 0.0489 |
|
| 1013 |
+
| 1.5242 | 599 | 0.0765 |
|
| 1014 |
+
| 1.5267 | 600 | 0.0651 |
|
| 1015 |
+
| 1.5293 | 601 | 0.0544 |
|
| 1016 |
+
| 1.5318 | 602 | 0.0777 |
|
| 1017 |
+
| 1.5344 | 603 | 0.0638 |
|
| 1018 |
+
| 1.5369 | 604 | 0.1198 |
|
| 1019 |
+
| 1.5394 | 605 | 0.0882 |
|
| 1020 |
+
| 1.5420 | 606 | 0.0236 |
|
| 1021 |
+
| 1.5445 | 607 | 0.0202 |
|
| 1022 |
+
| 1.5471 | 608 | 0.0955 |
|
| 1023 |
+
| 1.5496 | 609 | 0.0366 |
|
| 1024 |
+
| 1.5522 | 610 | 0.1021 |
|
| 1025 |
+
| 1.5547 | 611 | 0.0669 |
|
| 1026 |
+
| 1.5573 | 612 | 0.0185 |
|
| 1027 |
+
| 1.5598 | 613 | 0.0575 |
|
| 1028 |
+
| 1.5623 | 614 | 0.1001 |
|
| 1029 |
+
| 1.5649 | 615 | 0.0664 |
|
| 1030 |
+
| 1.5674 | 616 | 0.0617 |
|
| 1031 |
+
| 1.5700 | 617 | 0.0661 |
|
| 1032 |
+
| 1.5725 | 618 | 0.0425 |
|
| 1033 |
+
| 1.5751 | 619 | 0.0445 |
|
| 1034 |
+
| 1.5776 | 620 | 0.0773 |
|
| 1035 |
+
| 1.5802 | 621 | 0.0504 |
|
| 1036 |
+
| 1.5827 | 622 | 0.0785 |
|
| 1037 |
+
| 1.5852 | 623 | 0.0802 |
|
| 1038 |
+
| 1.5878 | 624 | 0.0882 |
|
| 1039 |
+
| 1.5903 | 625 | 0.0125 |
|
| 1040 |
+
| 1.5929 | 626 | 0.0305 |
|
| 1041 |
+
| 1.5954 | 627 | 0.0275 |
|
| 1042 |
+
| 1.5980 | 628 | 0.0245 |
|
| 1043 |
+
| 1.6005 | 629 | 0.0897 |
|
| 1044 |
+
| 1.6031 | 630 | 0.0444 |
|
| 1045 |
+
| 1.6056 | 631 | 0.0589 |
|
| 1046 |
+
| 1.6081 | 632 | 0.0337 |
|
| 1047 |
+
| 1.6107 | 633 | 0.0889 |
|
| 1048 |
+
| 1.6132 | 634 | 0.0556 |
|
| 1049 |
+
| 1.6158 | 635 | 0.0426 |
|
| 1050 |
+
| 1.6183 | 636 | 0.046 |
|
| 1051 |
+
| 1.6209 | 637 | 0.0342 |
|
| 1052 |
+
| 1.6234 | 638 | 0.0573 |
|
| 1053 |
+
| 1.6260 | 639 | 0.0569 |
|
| 1054 |
+
| 1.6285 | 640 | 0.0248 |
|
| 1055 |
+
| 1.6310 | 641 | 0.0214 |
|
| 1056 |
+
| 1.6336 | 642 | 0.0147 |
|
| 1057 |
+
| 1.6361 | 643 | 0.0203 |
|
| 1058 |
+
| 1.6387 | 644 | 0.0366 |
|
| 1059 |
+
| 1.6412 | 645 | 0.0484 |
|
| 1060 |
+
| 1.6438 | 646 | 0.0301 |
|
| 1061 |
+
| 1.6463 | 647 | 0.0314 |
|
| 1062 |
+
| 1.6489 | 648 | 0.0369 |
|
| 1063 |
+
| 1.6514 | 649 | 0.0168 |
|
| 1064 |
+
| 1.6539 | 650 | 0.0645 |
|
| 1065 |
+
| 1.6565 | 651 | 0.0755 |
|
| 1066 |
+
| 1.6590 | 652 | 0.0448 |
|
| 1067 |
+
| 1.6616 | 653 | 0.0795 |
|
| 1068 |
+
| 1.6641 | 654 | 0.0673 |
|
| 1069 |
+
| 1.6667 | 655 | 0.0431 |
|
| 1070 |
+
| 1.6692 | 656 | 0.0265 |
|
| 1071 |
+
| 1.6718 | 657 | 0.0567 |
|
| 1072 |
+
| 1.6743 | 658 | 0.0235 |
|
| 1073 |
+
| 1.6768 | 659 | 0.034 |
|
| 1074 |
+
| 1.6794 | 660 | 0.0812 |
|
| 1075 |
+
| 1.6819 | 661 | 0.0157 |
|
| 1076 |
+
| 1.6845 | 662 | 0.0448 |
|
| 1077 |
+
| 1.6870 | 663 | 0.0488 |
|
| 1078 |
+
| 1.6896 | 664 | 0.0515 |
|
| 1079 |
+
| 1.6921 | 665 | 0.0531 |
|
| 1080 |
+
| 1.6947 | 666 | 0.1166 |
|
| 1081 |
+
| 1.6972 | 667 | 0.0264 |
|
| 1082 |
+
| 1.6997 | 668 | 0.0325 |
|
| 1083 |
+
| 1.7023 | 669 | 0.0784 |
|
| 1084 |
+
| 1.7048 | 670 | 0.0859 |
|
| 1085 |
+
| 1.7074 | 671 | 0.0981 |
|
| 1086 |
+
| 1.7099 | 672 | 0.0411 |
|
| 1087 |
+
| 1.7125 | 673 | 0.0915 |
|
| 1088 |
+
| 1.7150 | 674 | 0.0396 |
|
| 1089 |
+
| 1.7176 | 675 | 0.1381 |
|
| 1090 |
+
| 1.7201 | 676 | 0.0547 |
|
| 1091 |
+
| 1.7226 | 677 | 0.0436 |
|
| 1092 |
+
| 1.7252 | 678 | 0.0519 |
|
| 1093 |
+
| 1.7277 | 679 | 0.0305 |
|
| 1094 |
+
| 1.7303 | 680 | 0.0356 |
|
| 1095 |
+
| 1.7328 | 681 | 0.0173 |
|
| 1096 |
+
| 1.7354 | 682 | 0.0299 |
|
| 1097 |
+
| 1.7379 | 683 | 0.0424 |
|
| 1098 |
+
| 1.7405 | 684 | 0.038 |
|
| 1099 |
+
| 1.7430 | 685 | 0.0159 |
|
| 1100 |
+
| 1.7455 | 686 | 0.0273 |
|
| 1101 |
+
| 1.7481 | 687 | 0.0301 |
|
| 1102 |
+
| 1.7506 | 688 | 0.0315 |
|
| 1103 |
+
| 1.7532 | 689 | 0.0566 |
|
| 1104 |
+
| 1.7557 | 690 | 0.0478 |
|
| 1105 |
+
| 1.7583 | 691 | 0.0533 |
|
| 1106 |
+
| 1.7608 | 692 | 0.0248 |
|
| 1107 |
+
| 1.7634 | 693 | 0.0454 |
|
| 1108 |
+
| 1.7659 | 694 | 0.0252 |
|
| 1109 |
+
| 1.7684 | 695 | 0.0326 |
|
| 1110 |
+
| 1.7710 | 696 | 0.0501 |
|
| 1111 |
+
| 1.7735 | 697 | 0.0196 |
|
| 1112 |
+
| 1.7761 | 698 | 0.0487 |
|
| 1113 |
+
| 1.7786 | 699 | 0.0445 |
|
| 1114 |
+
| 1.7812 | 700 | 0.1264 |
|
| 1115 |
+
| 1.7837 | 701 | 0.0312 |
|
| 1116 |
+
| 1.7863 | 702 | 0.1022 |
|
| 1117 |
+
| 1.7888 | 703 | 0.0293 |
|
| 1118 |
+
| 1.7913 | 704 | 0.0671 |
|
| 1119 |
+
| 1.7939 | 705 | 0.051 |
|
| 1120 |
+
| 1.7964 | 706 | 0.0246 |
|
| 1121 |
+
| 1.7990 | 707 | 0.1115 |
|
| 1122 |
+
| 1.8015 | 708 | 0.0203 |
|
| 1123 |
+
| 1.8041 | 709 | 0.0359 |
|
| 1124 |
+
| 1.8066 | 710 | 0.0699 |
|
| 1125 |
+
| 1.8092 | 711 | 0.0435 |
|
| 1126 |
+
| 1.8117 | 712 | 0.0689 |
|
| 1127 |
+
| 1.8142 | 713 | 0.0359 |
|
| 1128 |
+
| 1.8168 | 714 | 0.0321 |
|
| 1129 |
+
| 1.8193 | 715 | 0.0439 |
|
| 1130 |
+
| 1.8219 | 716 | 0.0652 |
|
| 1131 |
+
| 1.8244 | 717 | 0.0494 |
|
| 1132 |
+
| 1.8270 | 718 | 0.0864 |
|
| 1133 |
+
| 1.8295 | 719 | 0.0119 |
|
| 1134 |
+
| 1.8321 | 720 | 0.0284 |
|
| 1135 |
+
| 1.8346 | 721 | 0.0344 |
|
| 1136 |
+
| 1.8372 | 722 | 0.0454 |
|
| 1137 |
+
| 1.8397 | 723 | 0.0267 |
|
| 1138 |
+
| 1.8422 | 724 | 0.0152 |
|
| 1139 |
+
| 1.8448 | 725 | 0.0512 |
|
| 1140 |
+
| 1.8473 | 726 | 0.0537 |
|
| 1141 |
+
| 1.8499 | 727 | 0.0873 |
|
| 1142 |
+
| 1.8524 | 728 | 0.0934 |
|
| 1143 |
+
| 1.8550 | 729 | 0.0583 |
|
| 1144 |
+
| 1.8575 | 730 | 0.0206 |
|
| 1145 |
+
| 1.8601 | 731 | 0.0308 |
|
| 1146 |
+
| 1.8626 | 732 | 0.0443 |
|
| 1147 |
+
| 1.8651 | 733 | 0.0435 |
|
| 1148 |
+
| 1.8677 | 734 | 0.1254 |
|
| 1149 |
+
| 1.8702 | 735 | 0.0525 |
|
| 1150 |
+
| 1.8728 | 736 | 0.039 |
|
| 1151 |
+
| 1.8753 | 737 | 0.0157 |
|
| 1152 |
+
| 1.8779 | 738 | 0.0621 |
|
| 1153 |
+
| 1.8804 | 739 | 0.0405 |
|
| 1154 |
+
| 1.8830 | 740 | 0.0369 |
|
| 1155 |
+
| 1.8855 | 741 | 0.0568 |
|
| 1156 |
+
| 1.8880 | 742 | 0.0451 |
|
| 1157 |
+
| 1.8906 | 743 | 0.0657 |
|
| 1158 |
+
| 1.8931 | 744 | 0.0304 |
|
| 1159 |
+
| 1.8957 | 745 | 0.047 |
|
| 1160 |
+
| 1.8982 | 746 | 0.0457 |
|
| 1161 |
+
| 1.9008 | 747 | 0.0239 |
|
| 1162 |
+
| 1.9033 | 748 | 0.0669 |
|
| 1163 |
+
| 1.9059 | 749 | 0.0252 |
|
| 1164 |
+
| 1.9084 | 750 | 0.061 |
|
| 1165 |
+
| 1.9109 | 751 | 0.0429 |
|
| 1166 |
+
| 1.9135 | 752 | 0.0611 |
|
| 1167 |
+
| 1.9160 | 753 | 0.0482 |
|
| 1168 |
+
| 1.9186 | 754 | 0.0381 |
|
| 1169 |
+
| 1.9211 | 755 | 0.0749 |
|
| 1170 |
+
| 1.9237 | 756 | 0.0481 |
|
| 1171 |
+
| 1.9262 | 757 | 0.0405 |
|
| 1172 |
+
| 1.9288 | 758 | 0.0248 |
|
| 1173 |
+
| 1.9313 | 759 | 0.0377 |
|
| 1174 |
+
| 1.9338 | 760 | 0.061 |
|
| 1175 |
+
| 1.9364 | 761 | 0.0203 |
|
| 1176 |
+
| 1.9389 | 762 | 0.0315 |
|
| 1177 |
+
| 1.9415 | 763 | 0.0534 |
|
| 1178 |
+
| 1.9440 | 764 | 0.0383 |
|
| 1179 |
+
| 1.9466 | 765 | 0.0431 |
|
| 1180 |
+
| 1.9491 | 766 | 0.0509 |
|
| 1181 |
+
| 1.9517 | 767 | 0.0361 |
|
| 1182 |
+
| 1.9542 | 768 | 0.054 |
|
| 1183 |
+
| 1.9567 | 769 | 0.0248 |
|
| 1184 |
+
| 1.9593 | 770 | 0.1599 |
|
| 1185 |
+
| 1.9618 | 771 | 0.0657 |
|
| 1186 |
+
| 1.9644 | 772 | 0.0373 |
|
| 1187 |
+
| 1.9669 | 773 | 0.0632 |
|
| 1188 |
+
| 1.9695 | 774 | 0.0385 |
|
| 1189 |
+
| 1.9720 | 775 | 0.0456 |
|
| 1190 |
+
| 1.9746 | 776 | 0.0857 |
|
| 1191 |
+
| 1.9771 | 777 | 0.0253 |
|
| 1192 |
+
| 1.9796 | 778 | 0.0378 |
|
| 1193 |
+
| 1.9822 | 779 | 0.0366 |
|
| 1194 |
+
| 1.9847 | 780 | 0.0646 |
|
| 1195 |
+
| 1.9873 | 781 | 0.062 |
|
| 1196 |
+
| 1.9898 | 782 | 0.0513 |
|
| 1197 |
+
| 1.9924 | 783 | 0.0291 |
|
| 1198 |
+
| 1.9949 | 784 | 0.0466 |
|
| 1199 |
+
| 1.9975 | 785 | 0.0345 |
|
| 1200 |
+
| 2.0 | 786 | 0.0108 |
|
| 1201 |
+
| 2.0025 | 787 | 0.0196 |
|
| 1202 |
+
| 2.0051 | 788 | 0.0402 |
|
| 1203 |
+
| 2.0076 | 789 | 0.034 |
|
| 1204 |
+
| 2.0102 | 790 | 0.0606 |
|
| 1205 |
+
| 2.0127 | 791 | 0.0677 |
|
| 1206 |
+
| 2.0153 | 792 | 0.0174 |
|
| 1207 |
+
| 2.0178 | 793 | 0.0548 |
|
| 1208 |
+
| 2.0204 | 794 | 0.0385 |
|
| 1209 |
+
| 2.0229 | 795 | 0.0146 |
|
| 1210 |
+
| 2.0254 | 796 | 0.0716 |
|
| 1211 |
+
| 2.0280 | 797 | 0.0304 |
|
| 1212 |
+
| 2.0305 | 798 | 0.0512 |
|
| 1213 |
+
| 2.0331 | 799 | 0.0158 |
|
| 1214 |
+
| 2.0356 | 800 | 0.0973 |
|
| 1215 |
+
| 2.0382 | 801 | 0.0394 |
|
| 1216 |
+
| 2.0407 | 802 | 0.0724 |
|
| 1217 |
+
| 2.0433 | 803 | 0.0518 |
|
| 1218 |
+
| 2.0458 | 804 | 0.0385 |
|
| 1219 |
+
| 2.0483 | 805 | 0.0464 |
|
| 1220 |
+
| 2.0509 | 806 | 0.0501 |
|
| 1221 |
+
| 2.0534 | 807 | 0.051 |
|
| 1222 |
+
| 2.0560 | 808 | 0.0232 |
|
| 1223 |
+
| 2.0585 | 809 | 0.0631 |
|
| 1224 |
+
| 2.0611 | 810 | 0.0192 |
|
| 1225 |
+
| 2.0636 | 811 | 0.0301 |
|
| 1226 |
+
| 2.0662 | 812 | 0.0177 |
|
| 1227 |
+
| 2.0687 | 813 | 0.0172 |
|
| 1228 |
+
| 2.0712 | 814 | 0.0313 |
|
| 1229 |
+
| 2.0738 | 815 | 0.0653 |
|
| 1230 |
+
| 2.0763 | 816 | 0.0715 |
|
| 1231 |
+
| 2.0789 | 817 | 0.0548 |
|
| 1232 |
+
| 2.0814 | 818 | 0.0729 |
|
| 1233 |
+
| 2.0840 | 819 | 0.0399 |
|
| 1234 |
+
| 2.0865 | 820 | 0.0208 |
|
| 1235 |
+
| 2.0891 | 821 | 0.0476 |
|
| 1236 |
+
| 2.0916 | 822 | 0.054 |
|
| 1237 |
+
| 2.0941 | 823 | 0.0174 |
|
| 1238 |
+
| 2.0967 | 824 | 0.0431 |
|
| 1239 |
+
| 2.0992 | 825 | 0.0361 |
|
| 1240 |
+
| 2.1018 | 826 | 0.0514 |
|
| 1241 |
+
| 2.1043 | 827 | 0.0513 |
|
| 1242 |
+
| 2.1069 | 828 | 0.0099 |
|
| 1243 |
+
| 2.1094 | 829 | 0.0137 |
|
| 1244 |
+
| 2.1120 | 830 | 0.0493 |
|
| 1245 |
+
| 2.1145 | 831 | 0.0133 |
|
| 1246 |
+
| 2.1170 | 832 | 0.0087 |
|
| 1247 |
+
| 2.1196 | 833 | 0.0306 |
|
| 1248 |
+
| 2.1221 | 834 | 0.0092 |
|
| 1249 |
+
| 2.1247 | 835 | 0.0242 |
|
| 1250 |
+
| 2.1272 | 836 | 0.0905 |
|
| 1251 |
+
| 2.1298 | 837 | 0.0544 |
|
| 1252 |
+
| 2.1323 | 838 | 0.0462 |
|
| 1253 |
+
| 2.1349 | 839 | 0.0107 |
|
| 1254 |
+
| 2.1374 | 840 | 0.0846 |
|
| 1255 |
+
| 2.1399 | 841 | 0.031 |
|
| 1256 |
+
| 2.1425 | 842 | 0.027 |
|
| 1257 |
+
| 2.1450 | 843 | 0.05 |
|
| 1258 |
+
| 2.1476 | 844 | 0.0468 |
|
| 1259 |
+
| 2.1501 | 845 | 0.0251 |
|
| 1260 |
+
| 2.1527 | 846 | 0.031 |
|
| 1261 |
+
| 2.1552 | 847 | 0.0343 |
|
| 1262 |
+
| 2.1578 | 848 | 0.0149 |
|
| 1263 |
+
| 2.1603 | 849 | 0.0347 |
|
| 1264 |
+
| 2.1628 | 850 | 0.014 |
|
| 1265 |
+
| 2.1654 | 851 | 0.0471 |
|
| 1266 |
+
| 2.1679 | 852 | 0.0413 |
|
| 1267 |
+
| 2.1705 | 853 | 0.0047 |
|
| 1268 |
+
| 2.1730 | 854 | 0.0232 |
|
| 1269 |
+
| 2.1756 | 855 | 0.025 |
|
| 1270 |
+
| 2.1781 | 856 | 0.0621 |
|
| 1271 |
+
| 2.1807 | 857 | 0.0198 |
|
| 1272 |
+
| 2.1832 | 858 | 0.0346 |
|
| 1273 |
+
| 2.1858 | 859 | 0.0177 |
|
| 1274 |
+
| 2.1883 | 860 | 0.0298 |
|
| 1275 |
+
| 2.1908 | 861 | 0.0325 |
|
| 1276 |
+
| 2.1934 | 862 | 0.0075 |
|
| 1277 |
+
| 2.1959 | 863 | 0.0224 |
|
| 1278 |
+
| 2.1985 | 864 | 0.0085 |
|
| 1279 |
+
| 2.2010 | 865 | 0.0498 |
|
| 1280 |
+
| 2.2036 | 866 | 0.0222 |
|
| 1281 |
+
| 2.2061 | 867 | 0.0309 |
|
| 1282 |
+
| 2.2087 | 868 | 0.0074 |
|
| 1283 |
+
| 2.2112 | 869 | 0.0126 |
|
| 1284 |
+
| 2.2137 | 870 | 0.0372 |
|
| 1285 |
+
| 2.2163 | 871 | 0.0232 |
|
| 1286 |
+
| 2.2188 | 872 | 0.033 |
|
| 1287 |
+
| 2.2214 | 873 | 0.0111 |
|
| 1288 |
+
| 2.2239 | 874 | 0.0121 |
|
| 1289 |
+
| 2.2265 | 875 | 0.0552 |
|
| 1290 |
+
| 2.2290 | 876 | 0.0305 |
|
| 1291 |
+
| 2.2316 | 877 | 0.042 |
|
| 1292 |
+
| 2.2341 | 878 | 0.0147 |
|
| 1293 |
+
| 2.2366 | 879 | 0.0222 |
|
| 1294 |
+
| 2.2392 | 880 | 0.0341 |
|
| 1295 |
+
| 2.2417 | 881 | 0.0163 |
|
| 1296 |
+
| 2.2443 | 882 | 0.0084 |
|
| 1297 |
+
| 2.2468 | 883 | 0.0081 |
|
| 1298 |
+
| 2.2494 | 884 | 0.0312 |
|
| 1299 |
+
| 2.2519 | 885 | 0.0153 |
|
| 1300 |
+
| 2.2545 | 886 | 0.0262 |
|
| 1301 |
+
| 2.2570 | 887 | 0.0404 |
|
| 1302 |
+
| 2.2595 | 888 | 0.0198 |
|
| 1303 |
+
| 2.2621 | 889 | 0.0304 |
|
| 1304 |
+
| 2.2646 | 890 | 0.0544 |
|
| 1305 |
+
| 2.2672 | 891 | 0.065 |
|
| 1306 |
+
| 2.2697 | 892 | 0.0473 |
|
| 1307 |
+
| 2.2723 | 893 | 0.0291 |
|
| 1308 |
+
| 2.2748 | 894 | 0.0415 |
|
| 1309 |
+
| 2.2774 | 895 | 0.0398 |
|
| 1310 |
+
| 2.2799 | 896 | 0.018 |
|
| 1311 |
+
| 2.2824 | 897 | 0.0158 |
|
| 1312 |
+
| 2.2850 | 898 | 0.0161 |
|
| 1313 |
+
| 2.2875 | 899 | 0.0347 |
|
| 1314 |
+
| 2.2901 | 900 | 0.0104 |
|
| 1315 |
+
| 2.2926 | 901 | 0.044 |
|
| 1316 |
+
| 2.2952 | 902 | 0.019 |
|
| 1317 |
+
| 2.2977 | 903 | 0.0416 |
|
| 1318 |
+
| 2.3003 | 904 | 0.0039 |
|
| 1319 |
+
| 2.3028 | 905 | 0.0246 |
|
| 1320 |
+
| 2.3053 | 906 | 0.0133 |
|
| 1321 |
+
| 2.3079 | 907 | 0.0053 |
|
| 1322 |
+
| 2.3104 | 908 | 0.0992 |
|
| 1323 |
+
| 2.3130 | 909 | 0.0569 |
|
| 1324 |
+
| 2.3155 | 910 | 0.0326 |
|
| 1325 |
+
| 2.3181 | 911 | 0.0189 |
|
| 1326 |
+
| 2.3206 | 912 | 0.0115 |
|
| 1327 |
+
| 2.3232 | 913 | 0.0417 |
|
| 1328 |
+
| 2.3257 | 914 | 0.0161 |
|
| 1329 |
+
| 2.3282 | 915 | 0.0308 |
|
| 1330 |
+
| 2.3308 | 916 | 0.0234 |
|
| 1331 |
+
| 2.3333 | 917 | 0.027 |
|
| 1332 |
+
| 2.3359 | 918 | 0.0391 |
|
| 1333 |
+
| 2.3384 | 919 | 0.0107 |
|
| 1334 |
+
| 2.3410 | 920 | 0.0092 |
|
| 1335 |
+
| 2.3435 | 921 | 0.016 |
|
| 1336 |
+
| 2.3461 | 922 | 0.0299 |
|
| 1337 |
+
| 2.3486 | 923 | 0.0493 |
|
| 1338 |
+
| 2.3511 | 924 | 0.025 |
|
| 1339 |
+
| 2.3537 | 925 | 0.0127 |
|
| 1340 |
+
| 2.3562 | 926 | 0.0131 |
|
| 1341 |
+
| 2.3588 | 927 | 0.0214 |
|
| 1342 |
+
| 2.3613 | 928 | 0.0538 |
|
| 1343 |
+
| 2.3639 | 929 | 0.0082 |
|
| 1344 |
+
| 2.3664 | 930 | 0.043 |
|
| 1345 |
+
| 2.3690 | 931 | 0.0074 |
|
| 1346 |
+
| 2.3715 | 932 | 0.042 |
|
| 1347 |
+
| 2.3740 | 933 | 0.044 |
|
| 1348 |
+
| 2.3766 | 934 | 0.01 |
|
| 1349 |
+
| 2.3791 | 935 | 0.0055 |
|
| 1350 |
+
| 2.3817 | 936 | 0.0215 |
|
| 1351 |
+
| 2.3842 | 937 | 0.0258 |
|
| 1352 |
+
| 2.3868 | 938 | 0.0302 |
|
| 1353 |
+
| 2.3893 | 939 | 0.0326 |
|
| 1354 |
+
| 2.3919 | 940 | 0.0348 |
|
| 1355 |
+
| 2.3944 | 941 | 0.0444 |
|
| 1356 |
+
| 2.3969 | 942 | 0.019 |
|
| 1357 |
+
| 2.3995 | 943 | 0.0098 |
|
| 1358 |
+
| 2.4020 | 944 | 0.0283 |
|
| 1359 |
+
| 2.4046 | 945 | 0.0306 |
|
| 1360 |
+
| 2.4071 | 946 | 0.0316 |
|
| 1361 |
+
| 2.4097 | 947 | 0.01 |
|
| 1362 |
+
| 2.4122 | 948 | 0.0253 |
|
| 1363 |
+
| 2.4148 | 949 | 0.0664 |
|
| 1364 |
+
| 2.4173 | 950 | 0.0366 |
|
| 1365 |
+
| 2.4198 | 951 | 0.0307 |
|
| 1366 |
+
| 2.4224 | 952 | 0.0422 |
|
| 1367 |
+
| 2.4249 | 953 | 0.0133 |
|
| 1368 |
+
| 2.4275 | 954 | 0.0209 |
|
| 1369 |
+
| 2.4300 | 955 | 0.0065 |
|
| 1370 |
+
| 2.4326 | 956 | 0.0107 |
|
| 1371 |
+
| 2.4351 | 957 | 0.0396 |
|
| 1372 |
+
| 2.4377 | 958 | 0.0137 |
|
| 1373 |
+
| 2.4402 | 959 | 0.0258 |
|
| 1374 |
+
| 2.4427 | 960 | 0.0138 |
|
| 1375 |
+
| 2.4453 | 961 | 0.0275 |
|
| 1376 |
+
| 2.4478 | 962 | 0.0208 |
|
| 1377 |
+
| 2.4504 | 963 | 0.0302 |
|
| 1378 |
+
| 2.4529 | 964 | 0.0292 |
|
| 1379 |
+
| 2.4555 | 965 | 0.018 |
|
| 1380 |
+
| 2.4580 | 966 | 0.0168 |
|
| 1381 |
+
| 2.4606 | 967 | 0.0365 |
|
| 1382 |
+
| 2.4631 | 968 | 0.0141 |
|
| 1383 |
+
| 2.4656 | 969 | 0.0348 |
|
| 1384 |
+
| 2.4682 | 970 | 0.022 |
|
| 1385 |
+
| 2.4707 | 971 | 0.0677 |
|
| 1386 |
+
| 2.4733 | 972 | 0.0156 |
|
| 1387 |
+
| 2.4758 | 973 | 0.0424 |
|
| 1388 |
+
| 2.4784 | 974 | 0.0188 |
|
| 1389 |
+
| 2.4809 | 975 | 0.0494 |
|
| 1390 |
+
| 2.4835 | 976 | 0.0192 |
|
| 1391 |
+
| 2.4860 | 977 | 0.0346 |
|
| 1392 |
+
| 2.4885 | 978 | 0.0167 |
|
| 1393 |
+
| 2.4911 | 979 | 0.0274 |
|
| 1394 |
+
| 2.4936 | 980 | 0.0046 |
|
| 1395 |
+
| 2.4962 | 981 | 0.0301 |
|
| 1396 |
+
| 2.4987 | 982 | 0.0246 |
|
| 1397 |
+
| 2.5013 | 983 | 0.0222 |
|
| 1398 |
+
| 2.5038 | 984 | 0.0346 |
|
| 1399 |
+
| 2.5064 | 985 | 0.0595 |
|
| 1400 |
+
| 2.5089 | 986 | 0.0221 |
|
| 1401 |
+
| 2.5115 | 987 | 0.0211 |
|
| 1402 |
+
| 2.5140 | 988 | 0.0092 |
|
| 1403 |
+
| 2.5165 | 989 | 0.0225 |
|
| 1404 |
+
| 2.5191 | 990 | 0.0452 |
|
| 1405 |
+
| 2.5216 | 991 | 0.0288 |
|
| 1406 |
+
| 2.5242 | 992 | 0.044 |
|
| 1407 |
+
| 2.5267 | 993 | 0.0308 |
|
| 1408 |
+
| 2.5293 | 994 | 0.0309 |
|
| 1409 |
+
| 2.5318 | 995 | 0.0495 |
|
| 1410 |
+
| 2.5344 | 996 | 0.0384 |
|
| 1411 |
+
| 2.5369 | 997 | 0.0834 |
|
| 1412 |
+
| 2.5394 | 998 | 0.0866 |
|
| 1413 |
+
| 2.5420 | 999 | 0.0076 |
|
| 1414 |
+
| 2.5445 | 1000 | 0.0071 |
|
| 1415 |
+
| 2.5471 | 1001 | 0.0634 |
|
| 1416 |
+
| 2.5496 | 1002 | 0.0144 |
|
| 1417 |
+
| 2.5522 | 1003 | 0.077 |
|
| 1418 |
+
| 2.5547 | 1004 | 0.0347 |
|
| 1419 |
+
| 2.5573 | 1005 | 0.0081 |
|
| 1420 |
+
| 2.5598 | 1006 | 0.0216 |
|
| 1421 |
+
| 2.5623 | 1007 | 0.0437 |
|
| 1422 |
+
| 2.5649 | 1008 | 0.0367 |
|
| 1423 |
+
| 2.5674 | 1009 | 0.0281 |
|
| 1424 |
+
| 2.5700 | 1010 | 0.0312 |
|
| 1425 |
+
| 2.5725 | 1011 | 0.0181 |
|
| 1426 |
+
| 2.5751 | 1012 | 0.0226 |
|
| 1427 |
+
| 2.5776 | 1013 | 0.0558 |
|
| 1428 |
+
| 2.5802 | 1014 | 0.0267 |
|
| 1429 |
+
| 2.5827 | 1015 | 0.0596 |
|
| 1430 |
+
| 2.5852 | 1016 | 0.046 |
|
| 1431 |
+
| 2.5878 | 1017 | 0.0465 |
|
| 1432 |
+
| 2.5903 | 1018 | 0.0035 |
|
| 1433 |
+
| 2.5929 | 1019 | 0.019 |
|
| 1434 |
+
| 2.5954 | 1020 | 0.0118 |
|
| 1435 |
+
| 2.5980 | 1021 | 0.0128 |
|
| 1436 |
+
| 2.6005 | 1022 | 0.0458 |
|
| 1437 |
+
| 2.6031 | 1023 | 0.0185 |
|
| 1438 |
+
| 2.6056 | 1024 | 0.0309 |
|
| 1439 |
+
| 2.6081 | 1025 | 0.0142 |
|
| 1440 |
+
| 2.6107 | 1026 | 0.0732 |
|
| 1441 |
+
| 2.6132 | 1027 | 0.0327 |
|
| 1442 |
+
| 2.6158 | 1028 | 0.0296 |
|
| 1443 |
+
| 2.6183 | 1029 | 0.0237 |
|
| 1444 |
+
| 2.6209 | 1030 | 0.0169 |
|
| 1445 |
+
| 2.6234 | 1031 | 0.0306 |
|
| 1446 |
+
| 2.6260 | 1032 | 0.0235 |
|
| 1447 |
+
| 2.6285 | 1033 | 0.009 |
|
| 1448 |
+
| 2.6310 | 1034 | 0.0118 |
|
| 1449 |
+
| 2.6336 | 1035 | 0.0067 |
|
| 1450 |
+
| 2.6361 | 1036 | 0.008 |
|
| 1451 |
+
| 2.6387 | 1037 | 0.0202 |
|
| 1452 |
+
| 2.6412 | 1038 | 0.0241 |
|
| 1453 |
+
| 2.6438 | 1039 | 0.0118 |
|
| 1454 |
+
| 2.6463 | 1040 | 0.0161 |
|
| 1455 |
+
| 2.6489 | 1041 | 0.0242 |
|
| 1456 |
+
| 2.6514 | 1042 | 0.0072 |
|
| 1457 |
+
| 2.6539 | 1043 | 0.037 |
|
| 1458 |
+
| 2.6565 | 1044 | 0.0362 |
|
| 1459 |
+
| 2.6590 | 1045 | 0.0213 |
|
| 1460 |
+
| 2.6616 | 1046 | 0.0458 |
|
| 1461 |
+
| 2.6641 | 1047 | 0.0358 |
|
| 1462 |
+
| 2.6667 | 1048 | 0.024 |
|
| 1463 |
+
| 2.6692 | 1049 | 0.0093 |
|
| 1464 |
+
| 2.6718 | 1050 | 0.0306 |
|
| 1465 |
+
| 2.6743 | 1051 | 0.0075 |
|
| 1466 |
+
| 2.6768 | 1052 | 0.0193 |
|
| 1467 |
+
| 2.6794 | 1053 | 0.048 |
|
| 1468 |
+
| 2.6819 | 1054 | 0.0058 |
|
| 1469 |
+
| 2.6845 | 1055 | 0.0233 |
|
| 1470 |
+
| 2.6870 | 1056 | 0.0264 |
|
| 1471 |
+
| 2.6896 | 1057 | 0.0276 |
|
| 1472 |
+
| 2.6921 | 1058 | 0.0346 |
|
| 1473 |
+
| 2.6947 | 1059 | 0.0854 |
|
| 1474 |
+
| 2.6972 | 1060 | 0.0119 |
|
| 1475 |
+
| 2.6997 | 1061 | 0.0174 |
|
| 1476 |
+
| 2.7023 | 1062 | 0.0514 |
|
| 1477 |
+
| 2.7048 | 1063 | 0.0628 |
|
| 1478 |
+
| 2.7074 | 1064 | 0.0721 |
|
| 1479 |
+
| 2.7099 | 1065 | 0.0246 |
|
| 1480 |
+
| 2.7125 | 1066 | 0.049 |
|
| 1481 |
+
| 2.7150 | 1067 | 0.0148 |
|
| 1482 |
+
| 2.7176 | 1068 | 0.1024 |
|
| 1483 |
+
| 2.7201 | 1069 | 0.0312 |
|
| 1484 |
+
| 2.7226 | 1070 | 0.029 |
|
| 1485 |
+
| 2.7252 | 1071 | 0.0352 |
|
| 1486 |
+
| 2.7277 | 1072 | 0.0131 |
|
| 1487 |
+
| 2.7303 | 1073 | 0.0195 |
|
| 1488 |
+
| 2.7328 | 1074 | 0.0064 |
|
| 1489 |
+
| 2.7354 | 1075 | 0.0169 |
|
| 1490 |
+
| 2.7379 | 1076 | 0.0232 |
|
| 1491 |
+
| 2.7405 | 1077 | 0.0216 |
|
| 1492 |
+
| 2.7430 | 1078 | 0.0058 |
|
| 1493 |
+
| 2.7455 | 1079 | 0.0089 |
|
| 1494 |
+
| 2.7481 | 1080 | 0.0143 |
|
| 1495 |
+
| 2.7506 | 1081 | 0.0168 |
|
| 1496 |
+
| 2.7532 | 1082 | 0.0331 |
|
| 1497 |
+
| 2.7557 | 1083 | 0.0255 |
|
| 1498 |
+
| 2.7583 | 1084 | 0.0312 |
|
| 1499 |
+
| 2.7608 | 1085 | 0.0125 |
|
| 1500 |
+
| 2.7634 | 1086 | 0.0228 |
|
| 1501 |
+
| 2.7659 | 1087 | 0.0083 |
|
| 1502 |
+
| 2.7684 | 1088 | 0.0141 |
|
| 1503 |
+
| 2.7710 | 1089 | 0.0189 |
|
| 1504 |
+
| 2.7735 | 1090 | 0.0109 |
|
| 1505 |
+
| 2.7761 | 1091 | 0.0195 |
|
| 1506 |
+
| 2.7786 | 1092 | 0.0169 |
|
| 1507 |
+
| 2.7812 | 1093 | 0.0937 |
|
| 1508 |
+
| 2.7837 | 1094 | 0.019 |
|
| 1509 |
+
| 2.7863 | 1095 | 0.0856 |
|
| 1510 |
+
| 2.7888 | 1096 | 0.0155 |
|
| 1511 |
+
| 2.7913 | 1097 | 0.0408 |
|
| 1512 |
+
| 2.7939 | 1098 | 0.0279 |
|
| 1513 |
+
| 2.7964 | 1099 | 0.008 |
|
| 1514 |
+
| 2.7990 | 1100 | 0.086 |
|
| 1515 |
+
| 2.8015 | 1101 | 0.0078 |
|
| 1516 |
+
| 2.8041 | 1102 | 0.0186 |
|
| 1517 |
+
| 2.8066 | 1103 | 0.0468 |
|
| 1518 |
+
| 2.8092 | 1104 | 0.0255 |
|
| 1519 |
+
| 2.8117 | 1105 | 0.0418 |
|
| 1520 |
+
| 2.8142 | 1106 | 0.0188 |
|
| 1521 |
+
| 2.8168 | 1107 | 0.0197 |
|
| 1522 |
+
| 2.8193 | 1108 | 0.023 |
|
| 1523 |
+
| 2.8219 | 1109 | 0.0421 |
|
| 1524 |
+
| 2.8244 | 1110 | 0.0301 |
|
| 1525 |
+
| 2.8270 | 1111 | 0.0627 |
|
| 1526 |
+
| 2.8295 | 1112 | 0.0052 |
|
| 1527 |
+
| 2.8321 | 1113 | 0.0163 |
|
| 1528 |
+
| 2.8346 | 1114 | 0.0209 |
|
| 1529 |
+
| 2.8372 | 1115 | 0.0277 |
|
| 1530 |
+
| 2.8397 | 1116 | 0.0211 |
|
| 1531 |
+
| 2.8422 | 1117 | 0.0066 |
|
| 1532 |
+
| 2.8448 | 1118 | 0.0263 |
|
| 1533 |
+
| 2.8473 | 1119 | 0.0408 |
|
| 1534 |
+
| 2.8499 | 1120 | 0.0516 |
|
| 1535 |
+
| 2.8524 | 1121 | 0.0748 |
|
| 1536 |
+
| 2.8550 | 1122 | 0.0309 |
|
| 1537 |
+
| 2.8575 | 1123 | 0.007 |
|
| 1538 |
+
| 2.8601 | 1124 | 0.014 |
|
| 1539 |
+
| 2.8626 | 1125 | 0.0284 |
|
| 1540 |
+
| 2.8651 | 1126 | 0.0165 |
|
| 1541 |
+
| 2.8677 | 1127 | 0.0975 |
|
| 1542 |
+
| 2.8702 | 1128 | 0.0354 |
|
| 1543 |
+
| 2.8728 | 1129 | 0.0235 |
|
| 1544 |
+
| 2.8753 | 1130 | 0.0074 |
|
| 1545 |
+
| 2.8779 | 1131 | 0.0386 |
|
| 1546 |
+
| 2.8804 | 1132 | 0.0173 |
|
| 1547 |
+
| 2.8830 | 1133 | 0.0211 |
|
| 1548 |
+
| 2.8855 | 1134 | 0.0305 |
|
| 1549 |
+
| 2.8880 | 1135 | 0.0219 |
|
| 1550 |
+
| 2.8906 | 1136 | 0.0454 |
|
| 1551 |
+
| 2.8931 | 1137 | 0.0176 |
|
| 1552 |
+
| 2.8957 | 1138 | 0.0261 |
|
| 1553 |
+
| 2.8982 | 1139 | 0.0274 |
|
| 1554 |
+
| 2.9008 | 1140 | 0.0131 |
|
| 1555 |
+
| 2.9033 | 1141 | 0.0485 |
|
| 1556 |
+
| 2.9059 | 1142 | 0.0129 |
|
| 1557 |
+
| 2.9084 | 1143 | 0.05 |
|
| 1558 |
+
| 2.9109 | 1144 | 0.0306 |
|
| 1559 |
+
| 2.9135 | 1145 | 0.0352 |
|
| 1560 |
+
| 2.9160 | 1146 | 0.0271 |
|
| 1561 |
+
| 2.9186 | 1147 | 0.0216 |
|
| 1562 |
+
| 2.9211 | 1148 | 0.0567 |
|
| 1563 |
+
| 2.9237 | 1149 | 0.0258 |
|
| 1564 |
+
| 2.9262 | 1150 | 0.0221 |
|
| 1565 |
+
| 2.9288 | 1151 | 0.0112 |
|
| 1566 |
+
| 2.9313 | 1152 | 0.0199 |
|
| 1567 |
+
| 2.9338 | 1153 | 0.0388 |
|
| 1568 |
+
| 2.9364 | 1154 | 0.0101 |
|
| 1569 |
+
| 2.9389 | 1155 | 0.0179 |
|
| 1570 |
+
| 2.9415 | 1156 | 0.0358 |
|
| 1571 |
+
| 2.9440 | 1157 | 0.0247 |
|
| 1572 |
+
| 2.9466 | 1158 | 0.031 |
|
| 1573 |
+
| 2.9491 | 1159 | 0.0367 |
|
| 1574 |
+
| 2.9517 | 1160 | 0.0198 |
|
| 1575 |
+
| 2.9542 | 1161 | 0.0346 |
|
| 1576 |
+
| 2.9567 | 1162 | 0.011 |
|
| 1577 |
+
| 2.9593 | 1163 | 0.139 |
|
| 1578 |
+
| 2.9618 | 1164 | 0.0555 |
|
| 1579 |
+
| 2.9644 | 1165 | 0.0228 |
|
| 1580 |
+
| 2.9669 | 1166 | 0.0377 |
|
| 1581 |
+
| 2.9695 | 1167 | 0.024 |
|
| 1582 |
+
| 2.9720 | 1168 | 0.0331 |
|
| 1583 |
+
| 2.9746 | 1169 | 0.0815 |
|
| 1584 |
+
| 2.9771 | 1170 | 0.0116 |
|
| 1585 |
+
| 2.9796 | 1171 | 0.0186 |
|
| 1586 |
+
| 2.9822 | 1172 | 0.0153 |
|
| 1587 |
+
| 2.9847 | 1173 | 0.0557 |
|
| 1588 |
+
| 2.9873 | 1174 | 0.0406 |
|
| 1589 |
+
| 2.9898 | 1175 | 0.0334 |
|
| 1590 |
+
| 2.9924 | 1176 | 0.0265 |
|
| 1591 |
+
| 2.9949 | 1177 | 0.0333 |
|
| 1592 |
+
| 2.9975 | 1178 | 0.0177 |
|
| 1593 |
+
| 3.0 | 1179 | 0.0028 |
|
| 1594 |
+
|
| 1595 |
+
</details>
|
| 1596 |
+
|
| 1597 |
+
### Framework Versions
|
| 1598 |
+
- Python: 3.11.10
|
| 1599 |
+
- Sentence Transformers: 4.0.2
|
| 1600 |
+
- PyLate: 1.1.7
|
| 1601 |
+
- Transformers: 4.48.2
|
| 1602 |
+
- PyTorch: 2.5.1+cu124
|
| 1603 |
+
- Accelerate: 1.1.1
|
| 1604 |
+
- Datasets: 2.21.0
|
| 1605 |
+
- Tokenizers: 0.21.0
|
| 1606 |
+
|
| 1607 |
+
|
| 1608 |
+
## Citation
|
| 1609 |
+
|
| 1610 |
+
### BibTeX
|
| 1611 |
+
|
| 1612 |
+
#### Reason-ModernColBERT
|
| 1613 |
+
```bibtex
|
| 1614 |
+
@misc{Reason-ModernColBERT,
|
| 1615 |
+
title={Reason-ModernColBERT},
|
| 1616 |
+
author={Chaffin, Antoine},
|
| 1617 |
+
url={https://huggingface.co/lightonai/Reason-ModernColBERT},
|
| 1618 |
+
year={2025}
|
| 1619 |
+
}
|
| 1620 |
+
```
|
| 1621 |
+
|
| 1622 |
+
#### GTE-ModernColBERT
|
| 1623 |
+
```bibtex
|
| 1624 |
+
@misc{GTE-ModernColBERT,
|
| 1625 |
+
title={GTE-ModernColBERT},
|
| 1626 |
+
author={Chaffin, Antoine},
|
| 1627 |
+
url={https://huggingface.co/lightonai/GTE-ModernColBERT-v1},
|
| 1628 |
+
year={2025}
|
| 1629 |
+
}
|
| 1630 |
+
```
|
| 1631 |
+
|
| 1632 |
+
#### Sentence Transformers
|
| 1633 |
+
```bibtex
|
| 1634 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1635 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1636 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1637 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1638 |
+
month = "11",
|
| 1639 |
+
year = "2019",
|
| 1640 |
+
publisher = "Association for Computational Linguistics",
|
| 1641 |
+
url = "https://arxiv.org/abs/1908.10084"
|
| 1642 |
+
}
|
| 1643 |
+
```
|
| 1644 |
+
|
| 1645 |
+
#### PyLate
|
| 1646 |
+
```bibtex
|
| 1647 |
+
@misc{PyLate,
|
| 1648 |
+
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
|
| 1649 |
+
author={Chaffin, Antoine and Sourty, Raphaël},
|
| 1650 |
+
url={https://github.com/lightonai/pylate},
|
| 1651 |
+
year={2024}
|
| 1652 |
+
}
|
| 1653 |
+
```
|
| 1654 |
+
|
| 1655 |
+
#### CachedContrastive
|
| 1656 |
+
```bibtex
|
| 1657 |
+
@misc{gao2021scaling,
|
| 1658 |
+
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
|
| 1659 |
+
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
|
| 1660 |
+
year={2021},
|
| 1661 |
+
eprint={2101.06983},
|
| 1662 |
+
archivePrefix={arXiv},
|
| 1663 |
+
primaryClass={cs.LG}
|
| 1664 |
+
}
|
| 1665 |
+
```
|
| 1666 |
+
|
| 1667 |
+
<!--
|
| 1668 |
+
## Glossary
|
| 1669 |
+
|
| 1670 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1671 |
+
-->
|
| 1672 |
+
|
| 1673 |
+
<!--
|
| 1674 |
+
## Model Card Authors
|
| 1675 |
+
|
| 1676 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1677 |
+
-->
|
| 1678 |
+
|
| 1679 |
+
<!--
|
| 1680 |
+
## Model Card Contact
|
| 1681 |
+
|
| 1682 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1683 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/opt/home/nohtow/pylate/examples/train/output/GTE-ModernColBERT-v1/GTE-ModernColBERT-v1-ReasonIR_temp_1.0_noskiplist_1e-05_3epoch/final",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"ModernBertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 50281,
|
| 9 |
+
"classifier_activation": "gelu",
|
| 10 |
+
"classifier_bias": false,
|
| 11 |
+
"classifier_dropout": 0.0,
|
| 12 |
+
"classifier_pooling": "mean",
|
| 13 |
+
"cls_token_id": 50281,
|
| 14 |
+
"decoder_bias": true,
|
| 15 |
+
"deterministic_flash_attn": false,
|
| 16 |
+
"embedding_dropout": 0.0,
|
| 17 |
+
"eos_token_id": 50282,
|
| 18 |
+
"global_attn_every_n_layers": 3,
|
| 19 |
+
"global_rope_theta": 160000.0,
|
| 20 |
+
"gradient_checkpointing": false,
|
| 21 |
+
"hidden_activation": "gelu",
|
| 22 |
+
"hidden_size": 768,
|
| 23 |
+
"initializer_cutoff_factor": 2.0,
|
| 24 |
+
"initializer_range": 0.02,
|
| 25 |
+
"intermediate_size": 1152,
|
| 26 |
+
"layer_norm_eps": 1e-05,
|
| 27 |
+
"local_attention": 128,
|
| 28 |
+
"local_rope_theta": 10000.0,
|
| 29 |
+
"max_position_embeddings": 8192,
|
| 30 |
+
"mlp_bias": false,
|
| 31 |
+
"mlp_dropout": 0.0,
|
| 32 |
+
"model_type": "modernbert",
|
| 33 |
+
"norm_bias": false,
|
| 34 |
+
"norm_eps": 1e-05,
|
| 35 |
+
"num_attention_heads": 12,
|
| 36 |
+
"num_hidden_layers": 22,
|
| 37 |
+
"pad_token_id": 50283,
|
| 38 |
+
"position_embedding_type": "absolute",
|
| 39 |
+
"reference_compile": false,
|
| 40 |
+
"repad_logits_with_grad": false,
|
| 41 |
+
"sep_token_id": 50282,
|
| 42 |
+
"sparse_pred_ignore_index": -100,
|
| 43 |
+
"sparse_prediction": false,
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.48.2",
|
| 46 |
+
"vocab_size": 50370
|
| 47 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.0.2",
|
| 4 |
+
"transformers": "4.48.2",
|
| 5 |
+
"pytorch": "2.5.1+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "MaxSim",
|
| 10 |
+
"query_prefix": "[Q] ",
|
| 11 |
+
"document_prefix": "[D] ",
|
| 12 |
+
"query_length": 128,
|
| 13 |
+
"document_length": 8192,
|
| 14 |
+
"attend_to_expansion_tokens": false,
|
| 15 |
+
"skiplist_words": [
|
| 16 |
+
"!",
|
| 17 |
+
"\"",
|
| 18 |
+
"#",
|
| 19 |
+
"$",
|
| 20 |
+
"%",
|
| 21 |
+
"&",
|
| 22 |
+
"'",
|
| 23 |
+
"(",
|
| 24 |
+
")",
|
| 25 |
+
"*",
|
| 26 |
+
"+",
|
| 27 |
+
",",
|
| 28 |
+
"-",
|
| 29 |
+
".",
|
| 30 |
+
"/",
|
| 31 |
+
":",
|
| 32 |
+
";",
|
| 33 |
+
"<",
|
| 34 |
+
"=",
|
| 35 |
+
">",
|
| 36 |
+
"?",
|
| 37 |
+
"@",
|
| 38 |
+
"[",
|
| 39 |
+
"\\",
|
| 40 |
+
"]",
|
| 41 |
+
"^",
|
| 42 |
+
"_",
|
| 43 |
+
"`",
|
| 44 |
+
"{",
|
| 45 |
+
"|",
|
| 46 |
+
"}",
|
| 47 |
+
"~"
|
| 48 |
+
]
|
| 49 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a62051d1a9c889955b3035c2f5b7157eec1a5d3de25e15966ab80192f666a934
|
| 3 |
+
size 596076280
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Dense",
|
| 12 |
+
"type": "pylate.models.Dense.Dense"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 127,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": true,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "[MASK]",
|
| 17 |
+
"sep_token": {
|
| 18 |
+
"content": "[SEP]",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"unk_token": {
|
| 25 |
+
"content": "[UNK]",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,968 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "|||IP_ADDRESS|||",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": false
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|padding|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"50254": {
|
| 20 |
+
"content": " ",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": false
|
| 26 |
+
},
|
| 27 |
+
"50255": {
|
| 28 |
+
"content": " ",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": false
|
| 34 |
+
},
|
| 35 |
+
"50256": {
|
| 36 |
+
"content": " ",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": true,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": false
|
| 42 |
+
},
|
| 43 |
+
"50257": {
|
| 44 |
+
"content": " ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"50258": {
|
| 52 |
+
"content": " ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
},
|
| 59 |
+
"50259": {
|
| 60 |
+
"content": " ",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": false
|
| 66 |
+
},
|
| 67 |
+
"50260": {
|
| 68 |
+
"content": " ",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": true,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": false
|
| 74 |
+
},
|
| 75 |
+
"50261": {
|
| 76 |
+
"content": " ",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": true,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"50262": {
|
| 84 |
+
"content": " ",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": true,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"50263": {
|
| 92 |
+
"content": " ",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": true,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"50264": {
|
| 100 |
+
"content": " ",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": true,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"50265": {
|
| 108 |
+
"content": " ",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": true,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"50266": {
|
| 116 |
+
"content": " ",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": true,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": false
|
| 122 |
+
},
|
| 123 |
+
"50267": {
|
| 124 |
+
"content": " ",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": true,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": false
|
| 130 |
+
},
|
| 131 |
+
"50268": {
|
| 132 |
+
"content": " ",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": true,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": false
|
| 138 |
+
},
|
| 139 |
+
"50269": {
|
| 140 |
+
"content": " ",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": true,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": false
|
| 146 |
+
},
|
| 147 |
+
"50270": {
|
| 148 |
+
"content": " ",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": true,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": false
|
| 154 |
+
},
|
| 155 |
+
"50271": {
|
| 156 |
+
"content": " ",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": true,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": false
|
| 162 |
+
},
|
| 163 |
+
"50272": {
|
| 164 |
+
"content": " ",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": true,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": false
|
| 170 |
+
},
|
| 171 |
+
"50273": {
|
| 172 |
+
"content": " ",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": true,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": false
|
| 178 |
+
},
|
| 179 |
+
"50274": {
|
| 180 |
+
"content": " ",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": true,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": false
|
| 186 |
+
},
|
| 187 |
+
"50275": {
|
| 188 |
+
"content": " ",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": true,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": false
|
| 194 |
+
},
|
| 195 |
+
"50276": {
|
| 196 |
+
"content": " ",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": true,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": false
|
| 202 |
+
},
|
| 203 |
+
"50277": {
|
| 204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": true,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": false
|
| 210 |
+
},
|
| 211 |
+
"50278": {
|
| 212 |
+
"content": "|||PHONE_NUMBER|||",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": true,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": false
|
| 218 |
+
},
|
| 219 |
+
"50279": {
|
| 220 |
+
"content": "<|endoftext|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"50280": {
|
| 228 |
+
"content": "[UNK]",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"50281": {
|
| 236 |
+
"content": "[CLS]",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"50282": {
|
| 244 |
+
"content": "[SEP]",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"50283": {
|
| 252 |
+
"content": "[PAD]",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"50284": {
|
| 260 |
+
"content": "[MASK]",
|
| 261 |
+
"lstrip": true,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"50285": {
|
| 268 |
+
"content": "[unused0]",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": true,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": false
|
| 274 |
+
},
|
| 275 |
+
"50286": {
|
| 276 |
+
"content": "[unused1]",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": true,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": false
|
| 282 |
+
},
|
| 283 |
+
"50287": {
|
| 284 |
+
"content": "[unused2]",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": true,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": false
|
| 290 |
+
},
|
| 291 |
+
"50288": {
|
| 292 |
+
"content": "[unused3]",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": true,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": false
|
| 298 |
+
},
|
| 299 |
+
"50289": {
|
| 300 |
+
"content": "[unused4]",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": true,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": false
|
| 306 |
+
},
|
| 307 |
+
"50290": {
|
| 308 |
+
"content": "[unused5]",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": true,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": false
|
| 314 |
+
},
|
| 315 |
+
"50291": {
|
| 316 |
+
"content": "[unused6]",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": true,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": false
|
| 322 |
+
},
|
| 323 |
+
"50292": {
|
| 324 |
+
"content": "[unused7]",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": true,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": false
|
| 330 |
+
},
|
| 331 |
+
"50293": {
|
| 332 |
+
"content": "[unused8]",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": true,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": false
|
| 338 |
+
},
|
| 339 |
+
"50294": {
|
| 340 |
+
"content": "[unused9]",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": true,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": false
|
| 346 |
+
},
|
| 347 |
+
"50295": {
|
| 348 |
+
"content": "[unused10]",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": true,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": false
|
| 354 |
+
},
|
| 355 |
+
"50296": {
|
| 356 |
+
"content": "[unused11]",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": true,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": false
|
| 362 |
+
},
|
| 363 |
+
"50297": {
|
| 364 |
+
"content": "[unused12]",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": true,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": false
|
| 370 |
+
},
|
| 371 |
+
"50298": {
|
| 372 |
+
"content": "[unused13]",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": true,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": false
|
| 378 |
+
},
|
| 379 |
+
"50299": {
|
| 380 |
+
"content": "[unused14]",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": true,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": false
|
| 386 |
+
},
|
| 387 |
+
"50300": {
|
| 388 |
+
"content": "[unused15]",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": true,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": false
|
| 394 |
+
},
|
| 395 |
+
"50301": {
|
| 396 |
+
"content": "[unused16]",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": true,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": false
|
| 402 |
+
},
|
| 403 |
+
"50302": {
|
| 404 |
+
"content": "[unused17]",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": true,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": false
|
| 410 |
+
},
|
| 411 |
+
"50303": {
|
| 412 |
+
"content": "[unused18]",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": true,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": false
|
| 418 |
+
},
|
| 419 |
+
"50304": {
|
| 420 |
+
"content": "[unused19]",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": true,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": false
|
| 426 |
+
},
|
| 427 |
+
"50305": {
|
| 428 |
+
"content": "[unused20]",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": true,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": false
|
| 434 |
+
},
|
| 435 |
+
"50306": {
|
| 436 |
+
"content": "[unused21]",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": true,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": false
|
| 442 |
+
},
|
| 443 |
+
"50307": {
|
| 444 |
+
"content": "[unused22]",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": true,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": false
|
| 450 |
+
},
|
| 451 |
+
"50308": {
|
| 452 |
+
"content": "[unused23]",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": true,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": false
|
| 458 |
+
},
|
| 459 |
+
"50309": {
|
| 460 |
+
"content": "[unused24]",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": true,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": false
|
| 466 |
+
},
|
| 467 |
+
"50310": {
|
| 468 |
+
"content": "[unused25]",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": true,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": false
|
| 474 |
+
},
|
| 475 |
+
"50311": {
|
| 476 |
+
"content": "[unused26]",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": true,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": false
|
| 482 |
+
},
|
| 483 |
+
"50312": {
|
| 484 |
+
"content": "[unused27]",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": true,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": false
|
| 490 |
+
},
|
| 491 |
+
"50313": {
|
| 492 |
+
"content": "[unused28]",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": true,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": false
|
| 498 |
+
},
|
| 499 |
+
"50314": {
|
| 500 |
+
"content": "[unused29]",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": true,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": false
|
| 506 |
+
},
|
| 507 |
+
"50315": {
|
| 508 |
+
"content": "[unused30]",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": true,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": false
|
| 514 |
+
},
|
| 515 |
+
"50316": {
|
| 516 |
+
"content": "[unused31]",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": true,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": false
|
| 522 |
+
},
|
| 523 |
+
"50317": {
|
| 524 |
+
"content": "[unused32]",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": true,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": false
|
| 530 |
+
},
|
| 531 |
+
"50318": {
|
| 532 |
+
"content": "[unused33]",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": true,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": false
|
| 538 |
+
},
|
| 539 |
+
"50319": {
|
| 540 |
+
"content": "[unused34]",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": true,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": false
|
| 546 |
+
},
|
| 547 |
+
"50320": {
|
| 548 |
+
"content": "[unused35]",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": true,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": false
|
| 554 |
+
},
|
| 555 |
+
"50321": {
|
| 556 |
+
"content": "[unused36]",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": true,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": false
|
| 562 |
+
},
|
| 563 |
+
"50322": {
|
| 564 |
+
"content": "[unused37]",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": true,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": false
|
| 570 |
+
},
|
| 571 |
+
"50323": {
|
| 572 |
+
"content": "[unused38]",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": true,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": false
|
| 578 |
+
},
|
| 579 |
+
"50324": {
|
| 580 |
+
"content": "[unused39]",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": true,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": false
|
| 586 |
+
},
|
| 587 |
+
"50325": {
|
| 588 |
+
"content": "[unused40]",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": true,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": false
|
| 594 |
+
},
|
| 595 |
+
"50326": {
|
| 596 |
+
"content": "[unused41]",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": true,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": false
|
| 602 |
+
},
|
| 603 |
+
"50327": {
|
| 604 |
+
"content": "[unused42]",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": true,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": false
|
| 610 |
+
},
|
| 611 |
+
"50328": {
|
| 612 |
+
"content": "[unused43]",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": true,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": false
|
| 618 |
+
},
|
| 619 |
+
"50329": {
|
| 620 |
+
"content": "[unused44]",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": true,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": false
|
| 626 |
+
},
|
| 627 |
+
"50330": {
|
| 628 |
+
"content": "[unused45]",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": true,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": false
|
| 634 |
+
},
|
| 635 |
+
"50331": {
|
| 636 |
+
"content": "[unused46]",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": true,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": false
|
| 642 |
+
},
|
| 643 |
+
"50332": {
|
| 644 |
+
"content": "[unused47]",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": true,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": false
|
| 650 |
+
},
|
| 651 |
+
"50333": {
|
| 652 |
+
"content": "[unused48]",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": true,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": false
|
| 658 |
+
},
|
| 659 |
+
"50334": {
|
| 660 |
+
"content": "[unused49]",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": true,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": false
|
| 666 |
+
},
|
| 667 |
+
"50335": {
|
| 668 |
+
"content": "[unused50]",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": true,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": false
|
| 674 |
+
},
|
| 675 |
+
"50336": {
|
| 676 |
+
"content": "[unused51]",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": true,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": false
|
| 682 |
+
},
|
| 683 |
+
"50337": {
|
| 684 |
+
"content": "[unused52]",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": true,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": false
|
| 690 |
+
},
|
| 691 |
+
"50338": {
|
| 692 |
+
"content": "[unused53]",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": true,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": false
|
| 698 |
+
},
|
| 699 |
+
"50339": {
|
| 700 |
+
"content": "[unused54]",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": true,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": false
|
| 706 |
+
},
|
| 707 |
+
"50340": {
|
| 708 |
+
"content": "[unused55]",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": true,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": false
|
| 714 |
+
},
|
| 715 |
+
"50341": {
|
| 716 |
+
"content": "[unused56]",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": true,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": false
|
| 722 |
+
},
|
| 723 |
+
"50342": {
|
| 724 |
+
"content": "[unused57]",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": true,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": false
|
| 730 |
+
},
|
| 731 |
+
"50343": {
|
| 732 |
+
"content": "[unused58]",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": true,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": false
|
| 738 |
+
},
|
| 739 |
+
"50344": {
|
| 740 |
+
"content": "[unused59]",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": true,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": false
|
| 746 |
+
},
|
| 747 |
+
"50345": {
|
| 748 |
+
"content": "[unused60]",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": true,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": false
|
| 754 |
+
},
|
| 755 |
+
"50346": {
|
| 756 |
+
"content": "[unused61]",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": true,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": false
|
| 762 |
+
},
|
| 763 |
+
"50347": {
|
| 764 |
+
"content": "[unused62]",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": true,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": false
|
| 770 |
+
},
|
| 771 |
+
"50348": {
|
| 772 |
+
"content": "[unused63]",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": true,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": false
|
| 778 |
+
},
|
| 779 |
+
"50349": {
|
| 780 |
+
"content": "[unused64]",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": true,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": false
|
| 786 |
+
},
|
| 787 |
+
"50350": {
|
| 788 |
+
"content": "[unused65]",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": true,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": false
|
| 794 |
+
},
|
| 795 |
+
"50351": {
|
| 796 |
+
"content": "[unused66]",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": true,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": false
|
| 802 |
+
},
|
| 803 |
+
"50352": {
|
| 804 |
+
"content": "[unused67]",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": true,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": false
|
| 810 |
+
},
|
| 811 |
+
"50353": {
|
| 812 |
+
"content": "[unused68]",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": true,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": false
|
| 818 |
+
},
|
| 819 |
+
"50354": {
|
| 820 |
+
"content": "[unused69]",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": true,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": false
|
| 826 |
+
},
|
| 827 |
+
"50355": {
|
| 828 |
+
"content": "[unused70]",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": true,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": false
|
| 834 |
+
},
|
| 835 |
+
"50356": {
|
| 836 |
+
"content": "[unused71]",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": true,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": false
|
| 842 |
+
},
|
| 843 |
+
"50357": {
|
| 844 |
+
"content": "[unused72]",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": true,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": false
|
| 850 |
+
},
|
| 851 |
+
"50358": {
|
| 852 |
+
"content": "[unused73]",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": true,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": false
|
| 858 |
+
},
|
| 859 |
+
"50359": {
|
| 860 |
+
"content": "[unused74]",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": true,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": false
|
| 866 |
+
},
|
| 867 |
+
"50360": {
|
| 868 |
+
"content": "[unused75]",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": true,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": false
|
| 874 |
+
},
|
| 875 |
+
"50361": {
|
| 876 |
+
"content": "[unused76]",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": true,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": false
|
| 882 |
+
},
|
| 883 |
+
"50362": {
|
| 884 |
+
"content": "[unused77]",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": true,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": false
|
| 890 |
+
},
|
| 891 |
+
"50363": {
|
| 892 |
+
"content": "[unused78]",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": true,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": false
|
| 898 |
+
},
|
| 899 |
+
"50364": {
|
| 900 |
+
"content": "[unused79]",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": true,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": false
|
| 906 |
+
},
|
| 907 |
+
"50365": {
|
| 908 |
+
"content": "[unused80]",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": true,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": false
|
| 914 |
+
},
|
| 915 |
+
"50366": {
|
| 916 |
+
"content": "[unused81]",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": true,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": false
|
| 922 |
+
},
|
| 923 |
+
"50367": {
|
| 924 |
+
"content": "[unused82]",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": true,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": false
|
| 930 |
+
},
|
| 931 |
+
"50368": {
|
| 932 |
+
"content": "[Q] ",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": true,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": false
|
| 938 |
+
},
|
| 939 |
+
"50369": {
|
| 940 |
+
"content": "[D] ",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": true,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": false
|
| 946 |
+
}
|
| 947 |
+
},
|
| 948 |
+
"clean_up_tokenization_spaces": true,
|
| 949 |
+
"cls_token": "[CLS]",
|
| 950 |
+
"extra_special_tokens": {},
|
| 951 |
+
"mask_token": "[MASK]",
|
| 952 |
+
"max_length": 299,
|
| 953 |
+
"model_input_names": [
|
| 954 |
+
"input_ids",
|
| 955 |
+
"attention_mask"
|
| 956 |
+
],
|
| 957 |
+
"model_max_length": 127,
|
| 958 |
+
"pad_to_multiple_of": null,
|
| 959 |
+
"pad_token": "[MASK]",
|
| 960 |
+
"pad_token_type_id": 0,
|
| 961 |
+
"padding_side": "right",
|
| 962 |
+
"sep_token": "[SEP]",
|
| 963 |
+
"stride": 0,
|
| 964 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 965 |
+
"truncation_side": "right",
|
| 966 |
+
"truncation_strategy": "longest_first",
|
| 967 |
+
"unk_token": "[UNK]"
|
| 968 |
+
}
|