File size: 7,359 Bytes
90ed8f9
 
 
 
 
 
 
 
3f8971c
 
90ed8f9
 
 
 
 
ec10712
6b227b8
f39cbbd
ec10712
6b227b8
 
 
 
 
 
 
 
 
ec10712
 
 
 
 
6b227b8
 
ec10712
 
 
6b227b8
ec10712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea1b3c
 
 
 
 
 
 
 
ec10712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea1b3c
 
 
 
 
 
 
 
ec10712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b645ef0
ec10712
 
 
 
 
 
 
 
 
 
6b227b8
 
 
ec10712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b227b8
 
 
ec10712
 
 
6b227b8
 
 
 
ec10712
 
 
6b227b8
 
 
ec10712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b227b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
license: apache-2.0
tags:
- diffusion-single-file
- comfyui
- distillation
- video
- video genration
base_model:
  - tencent/HunyuanVideo-1.5
pipeline_tags:
- image-to-video
- text-to-video
library_name: diffusers
pipeline_tag: image-to-video
---

# 🎬  Hy1.5-Quantized-Models

<img src="https://raw.githubusercontent.com/ModelTC/LightX2V/main/assets/img_lightx2v.png" width="75%" />

---

πŸ€— [HuggingFace](https://huggingface.co/lightx2v/Hy1.5-Quantized-Models) | [GitHub](https://github.com/ModelTC/LightX2V) | [License](https://opensource.org/licenses/Apache-2.0)

---

This repository contains quantized models for HunyuanVideo-1.5 optimized for use with LightX2V. These quantized models significantly reduce memory usage while maintaining high-quality video generation performance.

## πŸ“‹ Model List

### DIT (Diffusion Transformer) Models

* **`hy15_720p_i2v_fp8_e4m3_lightx2v.safetensors`** - 720p Image-to-Video quantized DIT model
* **`hy15_720p_t2v_fp8_e4m3_lightx2v.safetensors`** - 720p Text-to-Video quantized DIT model

### Encoder Models

* **`hy15_qwen25vl_llm_encoder_fp8_e4m3_lightx2v.safetensors`** - Quantized text encoder (Qwen2.5-VL LLM Encoder)

## πŸš€ Quick Start

### Installation

First, install LightX2V:

```bash
pip install -v git+https://github.com/ModelTC/LightX2V.git
```

Or build from source:

```bash
git clone https://github.com/ModelTC/LightX2V.git
cd LightX2V
pip install -v -e .
```

### Download Models

Download the quantized models from this repository:

```bash
# Using git-lfs
git lfs install
git clone https://huggingface.co/lightx2v/Hy1.5-Quantized-Models

# Or download individual files using huggingface-hub
pip install huggingface-hub
python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='lightx2v/Hy1.5-Quantized-Models', filename='hy15_720p_i2v_fp8_e4m3_lightx2v.safetensors', local_dir='./models')"
```

## πŸ’» Usage in LightX2V

### Text-to-Video (T2V) Example

```python
from lightx2v import LightX2VPipeline

# Initialize pipeline
pipe = LightX2VPipeline(
    model_path="/path/to/hunyuanvideo-1.5/",  # Original model path
    model_cls="hunyuan_video_1.5",
    transformer_model_name="720p_t2v",
    task="t2v",
)

# Enable quantization
pipe.enable_quantize(
    quant_scheme='fp8-sgl',
    dit_quantized=True,
    dit_quantized_ckpt="/path/to/hy15_720p_t2v_fp8_e4m3_lightx2v.safetensors",
    text_encoder_quantized=True,
    text_encoder_quantized_ckpt="/path/to/hy15_qwen25vl_llm_encoder_fp8_e4m3_lightx2v.safetensors",
    image_encoder_quantized=False,
)

# Optional: Enable offloading for lower VRAM usage
pipe.enable_offload(
    cpu_offload=True,
    offload_granularity="block",  # For HunyuanVideo-1.5, only "block" is supported
    text_encoder_offload=True,
    image_encoder_offload=False,
    vae_offload=False,
)

# Optional: Use lighttae
pipe.enable_lightvae(
    use_tae=True,
    tae_path="/path/to/lighttaehy1_5.safetensors",
    use_lightvae=False,
    vae_path=None,
)

# Create generator
pipe.create_generator(
    attn_mode="sage_attn2",
    infer_steps=50,
    num_frames=121,
    guidance_scale=6.0,
    sample_shift=9.0,
    aspect_ratio="16:9",
    fps=24,
)

# Generate video
seed = 123
prompt = "A beautiful sunset over the ocean with waves gently crashing on the shore."
negative_prompt = ""
save_result_path="/path/to/output.mp4"

pipe.generate(
    seed=seed,
    prompt=prompt,
    negative_prompt=negative_prompt,
    save_result_path=save_result_path,
)
```

### Image-to-Video (I2V) Example

```python
from lightx2v import LightX2VPipeline

# Initialize pipeline
pipe = LightX2VPipeline(
    model_path="/path/to/hunyuanvideo-1.5/",  # Original model path
    model_cls="hunyuan_video_1.5",
    transformer_model_name="720p_i2v",
    task="i2v",
)

# Enable quantization
pipe.enable_quantize(
    quant_scheme='fp8-sgl',
    dit_quantized=True,
    dit_quantized_ckpt="/path/to/hy15_720p_i2v_fp8_e4m3_lightx2v.safetensors",
    text_encoder_quantized=True,
    text_encoder_quantized_ckpt="/path/to/hy15_qwen25vl_llm_encoder_fp8_e4m3_lightx2v.safetensors",
    image_encoder_quantized=False,
)

# Optional: Use lighttae
pipe.enable_lightvae(
    use_tae=True,
    tae_path="/path/to/lighttaehy1_5.safetensors",
    use_lightvae=False,
    vae_path=None,
)

# Optional: Enable offloading for lower VRAM usage
pipe.enable_offload(
    cpu_offload=True,
    offload_granularity="block",
    text_encoder_offload=True,
    image_encoder_offload=False,
    vae_offload=False,
)

# Create generator
pipe.create_generator(
    attn_mode="sage_attn2",
    infer_steps=50,
    num_frames=121,
    guidance_scale=6.0,
    sample_shift=7.0,
    fps=24,
)

# Generate video
seed = 42
prompt = "The image comes to life with smooth motion and natural transitions."
negative_prompt = ""
save_result_path="/path/to/output.mp4"

pipe.generate(
    seed=seed,
    image_path="/path/to/input_image.jpg",
    prompt=prompt,
    negative_prompt=negative_prompt,
    save_result_path=save_result_path,
)
```

## βš™οΈ Quantization Scheme

These models use **FP8-E4M3** quantization with the **SGL (SGLang) kernel** scheme (`fp8-sgl`). This quantization format provides:

* **Significant memory reduction**: Up to 50% reduction in VRAM usage
* **Maintained quality**: Minimal quality degradation compared to full precision models
* **Faster inference**: Optimized kernels for accelerated computation

### Requirements

To use these quantized models, you need to install the SGL kernel:

```bash
# Requires torch == 2.8.0
pip install sgl-kernel --upgrade
```

Alternatively, you can use VLLM kernels:

```bash
pip install vllm
```

For more details on quantization schemes, please refer to the [LightX2V Quantization Documentation](https://lightx2v-en.readthedocs.io/en/latest/method_tutorials/quantization.html).

## πŸ“Š Performance Benefits

Using quantized models provides:

* **Lower VRAM Requirements**: Enables running on GPUs with less memory (e.g., RTX 4090 24GB)
* **Faster Inference**: Optimized quantized kernels accelerate computation
* **Quality Preservation**: FP8 quantization maintains high visual quality

## πŸ”— Related Resources

* [LightX2V GitHub Repository](https://github.com/ModelTC/LightX2V)
* [LightX2V Documentation](https://lightx2v-en.readthedocs.io/en/latest/)
* [HunyuanVideo-1.5 Original Model](https://huggingface.co/tencent/HunyuanVideo-1.5)
* [LightX2V Examples](https://github.com/ModelTC/LightX2V/tree/main/examples)

## πŸ“ Notes

* **Important**: All advanced configurations (including `enable_quantize()`) must be called **before** `create_generator()`, otherwise they will not take effect.
* The original HunyuanVideo-1.5 model weights are still required. These quantized models are used in conjunction with the original model structure.
* For best performance, we recommend using SageAttention 2 (`sage_attn2`) as the attention mode.

## 🀝 Citation

If you use these quantized models in your research, please cite:

```bibtex
@misc{lightx2v,
  author = {LightX2V Contributors},
  title = {LightX2V: Light Video Generation Inference Framework},
  year = {2025},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ModelTC/lightx2v}},
}
```

## πŸ“„ License

This model is released under the Apache 2.0 License, same as the original HunyuanVideo-1.5 model.