lilitket commited on
Commit
b66d798
·
1 Parent(s): f04a350

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -16
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.3853
20
- - Wer: 0.3258
21
 
22
  ## Model description
23
 
@@ -37,29 +37,71 @@ More information needed
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 0.0003
40
- - train_batch_size: 4
41
  - eval_batch_size: 8
42
  - seed: 42
43
- - gradient_accumulation_steps: 8
44
- - total_train_batch_size: 32
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_steps: 500
48
- - num_epochs: 30
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Wer |
54
- |:-------------:|:-----:|:----:|:---------------:|:------:|
55
- | 3.8377 | 3.7 | 400 | 0.6728 | 0.6887 |
56
- | 0.4209 | 7.4 | 800 | 0.4591 | 0.5044 |
57
- | 0.1976 | 11.11 | 1200 | 0.4477 | 0.4294 |
58
- | 0.1338 | 14.81 | 1600 | 0.4364 | 0.4132 |
59
- | 0.1024 | 18.51 | 2000 | 0.4454 | 0.3741 |
60
- | 0.0785 | 22.22 | 2400 | 0.4093 | 0.3580 |
61
- | 0.0613 | 25.92 | 2800 | 0.3930 | 0.3391 |
62
- | 0.0495 | 29.63 | 3200 | 0.3853 | 0.3258 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
 
65
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.7126
20
+ - Wer: 0.8198
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 0.0003
40
+ - train_batch_size: 1
41
  - eval_batch_size: 8
42
  - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 4
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 120
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:------:|:-----:|:---------------:|:------:|
55
+ | 6.7419 | 2.38 | 200 | 3.1913 | 1.0 |
56
+ | 3.0446 | 4.76 | 400 | 2.3247 | 1.0 |
57
+ | 1.3163 | 7.14 | 600 | 1.2629 | 0.9656 |
58
+ | 0.6058 | 9.52 | 800 | 1.2203 | 0.9343 |
59
+ | 0.3687 | 11.9 | 1000 | 1.2157 | 0.8849 |
60
+ | 0.2644 | 14.29 | 1200 | 1.3693 | 0.8992 |
61
+ | 0.2147 | 16.67 | 1400 | 1.3321 | 0.8623 |
62
+ | 0.1962 | 19.05 | 1600 | 1.3476 | 0.8886 |
63
+ | 0.1631 | 21.43 | 1800 | 1.3984 | 0.8755 |
64
+ | 0.15 | 23.81 | 2000 | 1.4602 | 0.8798 |
65
+ | 0.1311 | 26.19 | 2200 | 1.4727 | 0.8836 |
66
+ | 0.1174 | 28.57 | 2400 | 1.5257 | 0.8805 |
67
+ | 0.1155 | 30.95 | 2600 | 1.4697 | 0.9337 |
68
+ | 0.1046 | 33.33 | 2800 | 1.6076 | 0.8667 |
69
+ | 0.1063 | 35.71 | 3000 | 1.5012 | 0.8861 |
70
+ | 0.0996 | 38.1 | 3200 | 1.6204 | 0.8605 |
71
+ | 0.088 | 40.48 | 3400 | 1.4788 | 0.8586 |
72
+ | 0.089 | 42.86 | 3600 | 1.5983 | 0.8648 |
73
+ | 0.0805 | 45.24 | 3800 | 1.5045 | 0.8298 |
74
+ | 0.0718 | 47.62 | 4000 | 1.6361 | 0.8611 |
75
+ | 0.0718 | 50.0 | 4200 | 1.5088 | 0.8548 |
76
+ | 0.0649 | 52.38 | 4400 | 1.5491 | 0.8554 |
77
+ | 0.0685 | 54.76 | 4600 | 1.5939 | 0.8442 |
78
+ | 0.0588 | 57.14 | 4800 | 1.6321 | 0.8536 |
79
+ | 0.0591 | 59.52 | 5000 | 1.6468 | 0.8442 |
80
+ | 0.0529 | 61.9 | 5200 | 1.6086 | 0.8661 |
81
+ | 0.0482 | 64.29 | 5400 | 1.6622 | 0.8517 |
82
+ | 0.0396 | 66.67 | 5600 | 1.6191 | 0.8436 |
83
+ | 0.0463 | 69.05 | 5800 | 1.6231 | 0.8661 |
84
+ | 0.0415 | 71.43 | 6000 | 1.6874 | 0.8511 |
85
+ | 0.0383 | 73.81 | 6200 | 1.7054 | 0.8411 |
86
+ | 0.0411 | 76.19 | 6400 | 1.7073 | 0.8486 |
87
+ | 0.0346 | 78.57 | 6600 | 1.7137 | 0.8342 |
88
+ | 0.0318 | 80.95 | 6800 | 1.6523 | 0.8329 |
89
+ | 0.0299 | 83.33 | 7000 | 1.6893 | 0.8579 |
90
+ | 0.029 | 85.71 | 7200 | 1.7162 | 0.8429 |
91
+ | 0.025 | 88.1 | 7400 | 1.7589 | 0.8529 |
92
+ | 0.025 | 90.48 | 7600 | 1.7581 | 0.8398 |
93
+ | 0.0232 | 92.86 | 7800 | 1.8459 | 0.8442 |
94
+ | 0.0215 | 95.24 | 8000 | 1.7942 | 0.8448 |
95
+ | 0.0222 | 97.62 | 8200 | 1.6848 | 0.8442 |
96
+ | 0.0179 | 100.0 | 8400 | 1.7223 | 0.8298 |
97
+ | 0.0176 | 102.38 | 8600 | 1.7426 | 0.8404 |
98
+ | 0.016 | 104.76 | 8800 | 1.7501 | 0.8411 |
99
+ | 0.0153 | 107.14 | 9000 | 1.7185 | 0.8235 |
100
+ | 0.0136 | 109.52 | 9200 | 1.7250 | 0.8292 |
101
+ | 0.0117 | 111.9 | 9400 | 1.7159 | 0.8185 |
102
+ | 0.0123 | 114.29 | 9600 | 1.7135 | 0.8248 |
103
+ | 0.0121 | 116.67 | 9800 | 1.7189 | 0.8210 |
104
+ | 0.0116 | 119.05 | 10000 | 1.7126 | 0.8198 |
105
 
106
 
107
  ### Framework versions