gate369 commited on
Commit
a7b0685
·
verified ·
1 Parent(s): a59e4a9

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CustomTransformerForCausalLM"
4
+ ],
5
+ "d_model": 512,
6
+ "dim_feedforward": 2048,
7
+ "dropout": 0.1,
8
+ "group_size": 16,
9
+ "model_type": "custom_transformer",
10
+ "n_heads": 8,
11
+ "num_layers": 6,
12
+ "torch_dtype": "float32",
13
+ "transformers_version": "4.42.4",
14
+ "vocab_size": 32000
15
+ }
llama_interpretation.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import math
5
+ import torch.optim as optim
6
+ from transformers import AutoModelForCausalLM
7
+ from transformers.modeling_utils import PreTrainedModel
8
+ from transformers.configuration_utils import PretrainedConfig
9
+ # Update the DecoderLayer to use the grouped MultiHeadAttention
10
+ class DecoderLayer(nn.Module):
11
+ def __init__(self, d_model, n_heads, dim_feedforward, dropout=0.1, group_size=16):
12
+ super(DecoderLayer, self).__init__()
13
+ self.self_attn = MultiHeadAttention(d_model, n_heads, dropout, group_size)
14
+ self.feed_forward = PositionwiseFeedForward(d_model, dim_feedforward, dropout)
15
+ self.layer_norm1 = nn.LayerNorm(d_model)
16
+ self.layer_norm2 = nn.LayerNorm(d_model)
17
+ self.dropout = nn.Dropout(dropout)
18
+
19
+ def forward(self, x):
20
+ # Self-Attention Mechanism (SA)
21
+ norm_x = self.layer_norm1(x)
22
+ x = x + self.dropout(self.self_attn(norm_x, norm_x, norm_x))
23
+ # Feed-Forward Network (FFN)
24
+ norm_x = self.layer_norm2(x)
25
+ x = x + self.dropout(self.feed_forward(norm_x))
26
+ return x
27
+ class MultiHeadAttention(nn.Module):
28
+ def __init__(self, d_model, n_heads, dropout=0.1, group_size=16):
29
+ super(MultiHeadAttention, self).__init__()
30
+ self.query_linear = nn.Linear(d_model, d_model)
31
+ self.key_linear = nn.Linear(d_model, d_model)
32
+ self.value_linear = nn.Linear(d_model, d_model)
33
+ self.dropout = nn.Dropout(dropout)
34
+ self.n_heads = n_heads
35
+ self.d_model = d_model
36
+ self.group_size = group_size
37
+
38
+ def forward(self, query, key, value):
39
+ # Compute attention scores
40
+ query = self.query_linear(query)
41
+ key = self.key_linear(key)
42
+ value = self.value_linear(value)
43
+
44
+ # Split the input sequences into groups
45
+ query_groups = query.chunk(self.group_size, dim=1)
46
+ key_groups = key.chunk(self.group_size, dim=1)
47
+ value_groups = value.chunk(self.group_size, dim=1)
48
+
49
+ attention_scores = []
50
+ for q, k, v in zip(query_groups, key_groups, value_groups):
51
+ scores = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(self.d_model)
52
+ scores = F.softmax(scores, dim=-1)
53
+ scores = self.dropout(scores)
54
+ attention_scores.append(torch.matmul(scores, v))
55
+
56
+ # Concatenate the outputs from all groups
57
+ output = torch.cat(attention_scores, dim=1)
58
+ return output
59
+
60
+ class PositionwiseFeedForward(nn.Module):
61
+ def __init__(self, d_model, dim_feedforward, dropout=0.1):
62
+ super(PositionwiseFeedForward, self).__init__()
63
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
64
+ self.dropout = nn.Dropout(dropout)
65
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
66
+
67
+ def forward(self, x):
68
+ x = F.relu(self.linear1(x))
69
+ x = self.dropout(x)
70
+ x = self.linear2(x)
71
+ return x
72
+
73
+ # Update the Decoder class to use the grouped MultiHeadAttention
74
+ class Decoder(nn.Module):
75
+ def __init__(self, num_layers, d_model, n_heads, dim_feedforward, dropout=0.1, group_size=16):
76
+ super(Decoder, self).__init__()
77
+ self.layers = nn.ModuleList([
78
+ DecoderLayer(d_model, n_heads, dim_feedforward, dropout, group_size)
79
+ for _ in range(num_layers)
80
+ ])
81
+ self.layer_norm = nn.LayerNorm(d_model)
82
+
83
+ def forward(self, x):
84
+ for layer in self.layers:
85
+ x = layer(x)
86
+ x = self.layer_norm(x)
87
+ return x
88
+
89
+ class Embeddings(nn.Module):
90
+ def __init__(self, d_model, vocab_size):
91
+ super(Embeddings, self).__init__()
92
+ self.lut = nn.Embedding(vocab_size, d_model)
93
+ self.d_model = d_model
94
+
95
+ def forward(self, x):
96
+ return self.lut(x) * math.sqrt(self.d_model)
97
+
98
+ class PositionalEncoding(nn.Module):
99
+ def __init__(self, d_model, dropout=0.1, max_len=5000):
100
+ super(PositionalEncoding, self).__init__()
101
+ self.dropout = nn.Dropout(dropout)
102
+
103
+ pe = torch.zeros(max_len, d_model)
104
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
105
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
106
+ pe[:, 0::2] = torch.sin(position * div_term)
107
+ pe[:, 1::2] = torch.cos(position * div_term)
108
+ pe = pe.unsqueeze(0).transpose(0, 1)
109
+ self.register_buffer('pe', pe)
110
+
111
+ def forward(self, x):
112
+ x = x + self.pe[:x.size(0), :]
113
+ return self.dropout(x)
114
+ class RMSNorm(nn.Module):
115
+ def __init__(self, dim, epsilon=1e-6, scale=True):
116
+ super(RMSNorm, self).__init__()
117
+ self.epsilon = epsilon
118
+ self.scale = scale
119
+ self.weight = nn.Parameter(torch.ones(dim))
120
+
121
+ def forward(self, x):
122
+ rms = torch.sqrt(torch.mean(torch.square(x), dim=-1, keepdim=True))
123
+ if self.scale:
124
+ weight = self.weight / (rms + self.epsilon)
125
+ return weight * x
126
+ else:
127
+ return x / (rms + self.epsilon)
128
+ class TransformerDecoder(nn.Module):
129
+ def __init__(self, num_layers, d_model, n_heads, dim_feedforward, dropout=0.1, vocab_size=10000, group_size=16):
130
+ super(TransformerDecoder, self).__init__()
131
+ self.embeddings = Embeddings(d_model, vocab_size)
132
+ self.positional_encoding = PositionalEncoding(d_model, dropout)
133
+ self.decoder = Decoder(num_layers, d_model, n_heads, dim_feedforward, dropout)
134
+ self.rms_norm = RMSNorm(d_model)
135
+ self.group_size = group_size
136
+
137
+ def forward(self, x):
138
+ x = self.embeddings(x)
139
+ x = self.positional_encoding(x)
140
+ x = self.decoder(x)
141
+ x = self.rms_norm(x)
142
+ return x
143
+ class TransformerDecoderLM(nn.Module):
144
+ def __init__(self, num_layers, d_model, n_heads, dim_feedforward, dropout=0.1, vocab_size=10000, group_size=16):
145
+ super(TransformerDecoderLM, self).__init__()
146
+ self.transformer = TransformerDecoder(num_layers, d_model, n_heads, dim_feedforward, dropout, vocab_size, group_size)
147
+ self.lm_head = nn.Linear(d_model, vocab_size)
148
+
149
+ def forward(self, input_ids):
150
+ transformer_output = self.transformer(input_ids)
151
+ lm_logits = self.lm_head(transformer_output)
152
+ return lm_logits
153
+ class CustomConfig(PretrainedConfig):
154
+ model_type = "custom_transformer"
155
+ def __init__(self, num_layers=6, d_model=512, n_heads=8, dim_feedforward=2048, dropout=0.1, vocab_size=10000, group_size=16, **kwargs):
156
+ self.num_layers = num_layers
157
+ self.d_model = d_model
158
+ self.n_heads = n_heads
159
+ self.dim_feedforward = dim_feedforward
160
+ self.dropout = dropout
161
+ self.vocab_size = vocab_size
162
+ self.group_size = group_size
163
+ super().__init__(**kwargs)
164
+
165
+ class CustomTransformerForCausalLM(PreTrainedModel):
166
+ config_class = CustomConfig
167
+ def __init__(self, config):
168
+ super().__init__(config)
169
+ self.transformer = TransformerDecoderLM(
170
+ num_layers=config.num_layers,
171
+ d_model=config.d_model,
172
+ n_heads=config.n_heads,
173
+ dim_feedforward=config.dim_feedforward,
174
+ dropout=config.dropout,
175
+ vocab_size=config.vocab_size,
176
+ group_size=config.group_size
177
+ )
178
+
179
+ def forward(self, input_ids, labels=None):
180
+ logits = self.transformer(input_ids)
181
+
182
+ loss = None
183
+ if labels is not None:
184
+ loss_fct = nn.CrossEntropyLoss()
185
+ loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
186
+
187
+ return {"loss": loss, "logits": logits}
188
+
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:607759b9a7ea1bf6b24467f3fb0d72571495503b6acda537705d775bda98c4fc
3
+ size 210811824
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 32768,
37
+ "pad_token": "<unk>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }