Update README.md
Browse files
README.md
CHANGED
@@ -14,18 +14,44 @@ base_model:
|
|
14 |
|
15 |
# Llamipa: An Incremental Discourse Parser
|
16 |
|
17 |
-
Llamipa is an LLM (Llama3-8B) finetuned on the Minecraft Structured Dialogue Corpus (MSDC) https://
|
18 |
|
19 |
-
|
20 |
-
We provide the adapters for the Llamipa parser trained on Llama3-8B, the generation script, as well as the formatted MSDC test data.
|
21 |
|
22 |
### Model Description
|
23 |
|
24 |
- **Language(s) (NLP):** English
|
25 |
- **Finetuned from model:** Llama3-8B
|
26 |
|
27 |
-
###
|
28 |
|
29 |
**Paper:** https://aclanthology.org/2024.findings-emnlp.373/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
**Video:** https://www.youtube.com/watch?v=yerUotx3QZY
|
|
|
14 |
|
15 |
# Llamipa: An Incremental Discourse Parser
|
16 |
|
17 |
+
Llamipa is an LLM (Llama3-8B) finetuned on the Minecraft Structured Dialogue Corpus (MSDC) https://huggingface.co/datasets/linagora/MinecraftStructuredDialogueCorpus.
|
18 |
|
19 |
+
We provide the adapters for the Llamipa parser trained on Llama3-8B, the generation script, as well as the formatted MSDC data. We also provide scripts for formatting new dialogue data you may wish to try with Llamipa.
|
|
|
20 |
|
21 |
### Model Description
|
22 |
|
23 |
- **Language(s) (NLP):** English
|
24 |
- **Finetuned from model:** Llama3-8B
|
25 |
|
26 |
+
### Citations
|
27 |
|
28 |
**Paper:** https://aclanthology.org/2024.findings-emnlp.373/
|
29 |
+
**Video:** https://www.youtube.com/watch?v=yerUotx3QZY
|
30 |
+
|
31 |
+
Please cite the EMNLP Findings paper if you use Llamipa in your work
|
32 |
+
|
33 |
+
```bibtex
|
34 |
+
@inproceedings{thompson-etal-2024-llamipa,
|
35 |
+
title = "Llamipa: An Incremental Discourse Parser",
|
36 |
+
author = "Thompson, Kate and
|
37 |
+
Chaturvedi, Akshay and
|
38 |
+
Hunter, Julie and
|
39 |
+
Asher, Nicholas",
|
40 |
+
editor = "Al-Onaizan, Yaser and
|
41 |
+
Bansal, Mohit and
|
42 |
+
Chen, Yun-Nung",
|
43 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
|
44 |
+
month = nov,
|
45 |
+
year = "2024",
|
46 |
+
address = "Miami, Florida, USA",
|
47 |
+
publisher = "Association for Computational Linguistics",
|
48 |
+
url = "https://aclanthology.org/2024.findings-emnlp.373/",
|
49 |
+
doi = "10.18653/v1/2024.findings-emnlp.373",
|
50 |
+
pages = "6418--6430"
|
51 |
+
}
|
52 |
+
```
|
53 |
+
|
54 |
+
### Acknowledgements
|
55 |
+
|
56 |
+
We acknowledge support from the National Interdisciplinary Artificial Intelligence Institute, ANITI (Artificial and Natural Intelligence Toulouse Institute), funded by the French ‘Investing for the Future–PIA3’ program under the Grant agreement ANR-19-PI3A-000. We also thank the ANR project COCOBOTS (ANR-21-FAI2-0005), the ANR/DGA project DISCUTER (ANR21-ASIA-0005), and the COCOPIL “Graine” project funded by the Région Occitanie of France. This work was granted access to the HPC resources of CALMIP supercomputing center under the allocation 2016-P23060.
|
57 |
|
|