import torch import json from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from datasets import load_dataset from tqdm import tqdm device_map = "auto" model = AutoModelForCausalLM.from_pretrained( "/path/to/llamipa/adapter", return_dict=True, torch_dtype=torch.float16, device_map=device_map) tokenizer = AutoTokenizer.from_pretrained("/path/to/meta-llama3-8b/",add_eos_token=True) tokenizer.pad_token_id = tokenizer.eos_token_id + 1 tokenizer.padding_side = "right" pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, max_new_tokens=100) test_dataset = load_dataset("json", data_files={'test':'/path/to/parser_test_15_gold.jsonl'})["test"] def formatting_prompts_func(example): output_texts = [] for i in range(len(example['sample'])): text = f"<|begin_of_text|>Identify the discourse structure (DS) for the new turn in the following excerpt :\n {example['sample'][i]}\n ### DS:" output_texts.append(text) return output_texts test_texts = formatting_prompts_func(test_dataset) print("Test Length:", len(test_texts)) f = open("/path/to/test-output-file.txt","w") for text in tqdm(test_texts): print(text) print(pipe(text)[0]["generated_text"], file=f) f.close()