averoo commited on
Commit
47a7c06
·
verified ·
1 Parent(s): a451f24

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5aa10909dd7c4caf3253a0a3cf12f5c6fdc44a90eedcf638fbe64ee17a433a1
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:80415
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: lingtrain/labse-buryat
10
+ widget:
11
+ - source_sentence: 'Зуг эрднь-ишин силос келһнә , нань чигн кергүднь бас дегц дарцлдад
12
+ , тәв һарсн наста агрономд дав деерән цагнь беркдҗ бәәхнь Долдад медгднә . '
13
+ sentences:
14
+ - быть товарищем
15
+ - 'Дола понимала , что агроному не так-то просто в эту страдную пору выкроить время
16
+ . В связи с уборкой на него обрушилось множество забот . '
17
+ - стеснение
18
+ - source_sentence: белгтə-йорта
19
+ sentences:
20
+ - имеющий хорошее предзнаменование
21
+ - ' выполнение пятилетнего плана'
22
+ - помогать в перекочёвке
23
+ - source_sentence: 'Тедн нәә-хллдәд , мадн тал өөрдәд йовцхана ; мана толһа деер көмргдн
24
+ гиҗәх мет , усн деер улм өкәһәд йовна , цаһан дольгас мана цогциг деегшән өсргәд
25
+ хаяд бәәнә , мана оңһц , негл һосна дор хамхрҗах яңһг мет , тачкнад йовна , би
26
+ ода оңһцасн салҗ одвв , хад чолудин утх мет иртә , хамхрад кемтрҗ одсн хар-хар
27
+ орасинь үзҗәнәв , бийиннь деер ик өндрт , энүнә дарунь - эн эрлгүдин хумсдин деер
28
+ эцгәннь толһа үзҗәнәв . '
29
+ sentences:
30
+ - 'Качаясь , они подвигались к нам , наклонялись над водой , готовые опрокинуться
31
+ на головы наши , - раз , раз - подкидывают белые волны наши тела , хрустит наша
32
+ барка , точно орех под каблуком сапога , я оторван от нее , вижу изломанные черные
33
+ ребра скал , острые , как ножи , вижу голову отца высоко надо мною , потом - над
34
+ этими когтями дьяволов . '
35
+ - растопыривать
36
+ - 'Пузыревский , дымя цигаркой , ожидал обмена мнений . '
37
+ - source_sentence: 'Би бахмҗта кевәр җирһлән эдлвв . '
38
+ sentences:
39
+ - затруднение
40
+ - потому что
41
+ - '- Я славно пожил !.. '
42
+ - source_sentence: 'аврлт угаһар тәвх '
43
+ sentences:
44
+ - хранилище
45
+ - ' расправляться жестоким образом'
46
+ - 'Богу покоряйся , и он даст тебе все , что попросишь у него '
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ ---
50
+
51
+ # SentenceTransformer based on lingtrain/labse-buryat
52
+
53
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [lingtrain/labse-buryat](https://huggingface.co/lingtrain/labse-buryat). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** Sentence Transformer
59
+ - **Base model:** [lingtrain/labse-buryat](https://huggingface.co/lingtrain/labse-buryat) <!-- at revision 7c2b75b82da5361a7dcd3356e881e03184f780cb -->
60
+ - **Maximum Sequence Length:** 256 tokens
61
+ - **Output Dimensionality:** 768 dimensions
62
+ - **Similarity Function:** Cosine Similarity
63
+ <!-- - **Training Dataset:** Unknown -->
64
+ <!-- - **Language:** Unknown -->
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
70
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
71
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
72
+
73
+ ### Full Model Architecture
74
+
75
+ ```
76
+ SentenceTransformer(
77
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
78
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
79
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
80
+ (3): Normalize()
81
+ )
82
+ ```
83
+
84
+ ## Usage
85
+
86
+ ### Direct Usage (Sentence Transformers)
87
+
88
+ First install the Sentence Transformers library:
89
+
90
+ ```bash
91
+ pip install -U sentence-transformers
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+ ```python
96
+ from sentence_transformers import SentenceTransformer
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SentenceTransformer("sentence_transformers_model_id")
100
+ # Run inference
101
+ sentences = [
102
+ 'аврлт угаһар тәвх ',
103
+ ' расправляться жестоким образом',
104
+ 'Богу покоряйся , и он даст тебе все , что попросишь у него ',
105
+ ]
106
+ embeddings = model.encode(sentences)
107
+ print(embeddings.shape)
108
+ # [3, 768]
109
+
110
+ # Get the similarity scores for the embeddings
111
+ similarities = model.similarity(embeddings, embeddings)
112
+ print(similarities.shape)
113
+ # [3, 3]
114
+ ```
115
+
116
+ <!--
117
+ ### Direct Usage (Transformers)
118
+
119
+ <details><summary>Click to see the direct usage in Transformers</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Downstream Usage (Sentence Transformers)
126
+
127
+ You can finetune this model on your own dataset.
128
+
129
+ <details><summary>Click to expand</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Out-of-Scope Use
136
+
137
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
138
+ -->
139
+
140
+ <!--
141
+ ## Bias, Risks and Limitations
142
+
143
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
144
+ -->
145
+
146
+ <!--
147
+ ### Recommendations
148
+
149
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
150
+ -->
151
+
152
+ ## Training Details
153
+
154
+ ### Training Dataset
155
+
156
+ #### Unnamed Dataset
157
+
158
+ * Size: 80,415 training samples
159
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
160
+ * Approximate statistics based on the first 1000 samples:
161
+ | | sentence_0 | sentence_1 | label |
162
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
163
+ | type | string | string | float |
164
+ | details | <ul><li>min: 3 tokens</li><li>mean: 17.25 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.73 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
165
+ * Samples:
166
+ | sentence_0 | sentence_1 | label |
167
+ |:---------------------------------------------------|:------------------------------------------------------|:-----------------|
168
+ | <code>Сарин киитн герл терз деер тусҗана . </code> | <code>Луна залила неживым светом подоконник . </code> | <code>1.0</code> |
169
+ | <code>Тер цагт-социалистнр уга болх . </code> | <code>Тогда - не будет социалистов . </code> | <code>1.0</code> |
170
+ | <code>мейəркгч</code> | <code>завистливый</code> | <code>1.0</code> |
171
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
172
+ ```json
173
+ {
174
+ "scale": 20.0,
175
+ "similarity_fct": "cos_sim"
176
+ }
177
+ ```
178
+
179
+ ### Training Hyperparameters
180
+ #### Non-Default Hyperparameters
181
+
182
+ - `eval_strategy`: steps
183
+ - `num_train_epochs`: 1
184
+ - `fp16`: True
185
+ - `multi_dataset_batch_sampler`: round_robin
186
+
187
+ #### All Hyperparameters
188
+ <details><summary>Click to expand</summary>
189
+
190
+ - `overwrite_output_dir`: False
191
+ - `do_predict`: False
192
+ - `eval_strategy`: steps
193
+ - `prediction_loss_only`: True
194
+ - `per_device_train_batch_size`: 8
195
+ - `per_device_eval_batch_size`: 8
196
+ - `per_gpu_train_batch_size`: None
197
+ - `per_gpu_eval_batch_size`: None
198
+ - `gradient_accumulation_steps`: 1
199
+ - `eval_accumulation_steps`: None
200
+ - `torch_empty_cache_steps`: None
201
+ - `learning_rate`: 5e-05
202
+ - `weight_decay`: 0.0
203
+ - `adam_beta1`: 0.9
204
+ - `adam_beta2`: 0.999
205
+ - `adam_epsilon`: 1e-08
206
+ - `max_grad_norm`: 1
207
+ - `num_train_epochs`: 1
208
+ - `max_steps`: -1
209
+ - `lr_scheduler_type`: linear
210
+ - `lr_scheduler_kwargs`: {}
211
+ - `warmup_ratio`: 0.0
212
+ - `warmup_steps`: 0
213
+ - `log_level`: passive
214
+ - `log_level_replica`: warning
215
+ - `log_on_each_node`: True
216
+ - `logging_nan_inf_filter`: True
217
+ - `save_safetensors`: True
218
+ - `save_on_each_node`: False
219
+ - `save_only_model`: False
220
+ - `restore_callback_states_from_checkpoint`: False
221
+ - `no_cuda`: False
222
+ - `use_cpu`: False
223
+ - `use_mps_device`: False
224
+ - `seed`: 42
225
+ - `data_seed`: None
226
+ - `jit_mode_eval`: False
227
+ - `use_ipex`: False
228
+ - `bf16`: False
229
+ - `fp16`: True
230
+ - `fp16_opt_level`: O1
231
+ - `half_precision_backend`: auto
232
+ - `bf16_full_eval`: False
233
+ - `fp16_full_eval`: False
234
+ - `tf32`: None
235
+ - `local_rank`: 0
236
+ - `ddp_backend`: None
237
+ - `tpu_num_cores`: None
238
+ - `tpu_metrics_debug`: False
239
+ - `debug`: []
240
+ - `dataloader_drop_last`: False
241
+ - `dataloader_num_workers`: 0
242
+ - `dataloader_prefetch_factor`: None
243
+ - `past_index`: -1
244
+ - `disable_tqdm`: False
245
+ - `remove_unused_columns`: True
246
+ - `label_names`: None
247
+ - `load_best_model_at_end`: False
248
+ - `ignore_data_skip`: False
249
+ - `fsdp`: []
250
+ - `fsdp_min_num_params`: 0
251
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
252
+ - `tp_size`: 0
253
+ - `fsdp_transformer_layer_cls_to_wrap`: None
254
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
255
+ - `deepspeed`: None
256
+ - `label_smoothing_factor`: 0.0
257
+ - `optim`: adamw_torch
258
+ - `optim_args`: None
259
+ - `adafactor`: False
260
+ - `group_by_length`: False
261
+ - `length_column_name`: length
262
+ - `ddp_find_unused_parameters`: None
263
+ - `ddp_bucket_cap_mb`: None
264
+ - `ddp_broadcast_buffers`: False
265
+ - `dataloader_pin_memory`: True
266
+ - `dataloader_persistent_workers`: False
267
+ - `skip_memory_metrics`: True
268
+ - `use_legacy_prediction_loop`: False
269
+ - `push_to_hub`: False
270
+ - `resume_from_checkpoint`: None
271
+ - `hub_model_id`: None
272
+ - `hub_strategy`: every_save
273
+ - `hub_private_repo`: None
274
+ - `hub_always_push`: False
275
+ - `gradient_checkpointing`: False
276
+ - `gradient_checkpointing_kwargs`: None
277
+ - `include_inputs_for_metrics`: False
278
+ - `include_for_metrics`: []
279
+ - `eval_do_concat_batches`: True
280
+ - `fp16_backend`: auto
281
+ - `push_to_hub_model_id`: None
282
+ - `push_to_hub_organization`: None
283
+ - `mp_parameters`:
284
+ - `auto_find_batch_size`: False
285
+ - `full_determinism`: False
286
+ - `torchdynamo`: None
287
+ - `ray_scope`: last
288
+ - `ddp_timeout`: 1800
289
+ - `torch_compile`: False
290
+ - `torch_compile_backend`: None
291
+ - `torch_compile_mode`: None
292
+ - `include_tokens_per_second`: False
293
+ - `include_num_input_tokens_seen`: False
294
+ - `neftune_noise_alpha`: None
295
+ - `optim_target_modules`: None
296
+ - `batch_eval_metrics`: False
297
+ - `eval_on_start`: False
298
+ - `use_liger_kernel`: False
299
+ - `eval_use_gather_object`: False
300
+ - `average_tokens_across_devices`: False
301
+ - `prompts`: None
302
+ - `batch_sampler`: batch_sampler
303
+ - `multi_dataset_batch_sampler`: round_robin
304
+
305
+ </details>
306
+
307
+ ### Training Logs
308
+ | Epoch | Step | Training Loss |
309
+ |:------:|:----:|:-------------:|
310
+ | 0.0099 | 100 | - |
311
+ | 0.0199 | 200 | - |
312
+ | 0.0298 | 300 | - |
313
+ | 0.0398 | 400 | - |
314
+ | 0.0497 | 500 | 0.7566 |
315
+ | 0.0597 | 600 | - |
316
+ | 0.0696 | 700 | - |
317
+ | 0.0796 | 800 | - |
318
+ | 0.0895 | 900 | - |
319
+ | 0.0995 | 1000 | 0.503 |
320
+ | 0.1094 | 1100 | - |
321
+ | 0.1194 | 1200 | - |
322
+ | 0.1293 | 1300 | - |
323
+ | 0.1393 | 1400 | - |
324
+ | 0.1492 | 1500 | 0.4777 |
325
+ | 0.1592 | 1600 | - |
326
+ | 0.1691 | 1700 | - |
327
+ | 0.1791 | 1800 | - |
328
+ | 0.1890 | 1900 | - |
329
+ | 0.1990 | 2000 | 0.4608 |
330
+ | 0.2089 | 2100 | - |
331
+ | 0.2189 | 2200 | - |
332
+ | 0.2288 | 2300 | - |
333
+ | 0.2388 | 2400 | - |
334
+ | 0.2487 | 2500 | 0.419 |
335
+ | 0.2587 | 2600 | - |
336
+ | 0.2686 | 2700 | - |
337
+
338
+
339
+ ### Framework Versions
340
+ - Python: 3.11.12
341
+ - Sentence Transformers: 4.1.0
342
+ - Transformers: 4.51.3
343
+ - PyTorch: 2.6.0+cu124
344
+ - Accelerate: 1.6.0
345
+ - Datasets: 2.14.4
346
+ - Tokenizers: 0.21.1
347
+
348
+ ## Citation
349
+
350
+ ### BibTeX
351
+
352
+ #### Sentence Transformers
353
+ ```bibtex
354
+ @inproceedings{reimers-2019-sentence-bert,
355
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
356
+ author = "Reimers, Nils and Gurevych, Iryna",
357
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
358
+ month = "11",
359
+ year = "2019",
360
+ publisher = "Association for Computational Linguistics",
361
+ url = "https://arxiv.org/abs/1908.10084",
362
+ }
363
+ ```
364
+
365
+ #### MultipleNegativesRankingLoss
366
+ ```bibtex
367
+ @misc{henderson2017efficient,
368
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
369
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
370
+ year={2017},
371
+ eprint={1705.00652},
372
+ archivePrefix={arXiv},
373
+ primaryClass={cs.CL}
374
+ }
375
+ ```
376
+
377
+ <!--
378
+ ## Glossary
379
+
380
+ *Clearly define terms in order to be accessible across audiences.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Authors
385
+
386
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Contact
391
+
392
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
393
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.51.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 501153
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e1a6928d362622a4841d803563fadbfd86bcd550e98f02436316222b7b11421
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "[MASK]",
51
+ "max_length": 256,
52
+ "model_max_length": 256,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff