Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +17 -0
- 2/README.md +62 -0
- 2/adapter_config.json +39 -0
- 2/adapter_model.safetensors +3 -0
- 2/added_tokens.json +28 -0
- 2/all_results.json +9 -0
- 2/checkpoint-100/README.md +202 -0
- 2/checkpoint-100/adapter_config.json +39 -0
- 2/checkpoint-100/adapter_model.safetensors +3 -0
- 2/checkpoint-100/added_tokens.json +28 -0
- 2/checkpoint-100/global_step100/mp_rank_00_model_states.pt +3 -0
- 2/checkpoint-100/global_step100/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- 2/checkpoint-100/global_step100/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- 2/checkpoint-100/latest +1 -0
- 2/checkpoint-100/merges.txt +0 -0
- 2/checkpoint-100/rng_state_0.pth +3 -0
- 2/checkpoint-100/rng_state_1.pth +3 -0
- 2/checkpoint-100/scheduler.pt +3 -0
- 2/checkpoint-100/special_tokens_map.json +31 -0
- 2/checkpoint-100/tokenizer.json +3 -0
- 2/checkpoint-100/tokenizer_config.json +241 -0
- 2/checkpoint-100/trainer_state.json +194 -0
- 2/checkpoint-100/training_args.bin +3 -0
- 2/checkpoint-100/vocab.json +0 -0
- 2/checkpoint-100/zero_to_fp32.py +760 -0
- 2/checkpoint-1000/README.md +202 -0
- 2/checkpoint-1000/adapter_config.json +39 -0
- 2/checkpoint-1000/adapter_model.safetensors +3 -0
- 2/checkpoint-1000/added_tokens.json +28 -0
- 2/checkpoint-1000/global_step1000/mp_rank_00_model_states.pt +3 -0
- 2/checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- 2/checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- 2/checkpoint-1000/latest +1 -0
- 2/checkpoint-1000/merges.txt +0 -0
- 2/checkpoint-1000/rng_state_0.pth +3 -0
- 2/checkpoint-1000/rng_state_1.pth +3 -0
- 2/checkpoint-1000/scheduler.pt +3 -0
- 2/checkpoint-1000/special_tokens_map.json +31 -0
- 2/checkpoint-1000/tokenizer.json +3 -0
- 2/checkpoint-1000/tokenizer_config.json +241 -0
- 2/checkpoint-1000/trainer_state.json +1634 -0
- 2/checkpoint-1000/training_args.bin +3 -0
- 2/checkpoint-1000/vocab.json +0 -0
- 2/checkpoint-1000/zero_to_fp32.py +760 -0
- 2/checkpoint-1100/README.md +202 -0
- 2/checkpoint-1100/adapter_config.json +39 -0
- 2/checkpoint-1100/adapter_model.safetensors +3 -0
- 2/checkpoint-1100/added_tokens.json +28 -0
- 2/checkpoint-1100/global_step1100/mp_rank_00_model_states.pt +3 -0
- 2/checkpoint-1100/global_step1100/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,20 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
2/checkpoint-100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
2/checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
+
2/checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
+
2/checkpoint-1200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
41 |
+
2/checkpoint-1300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
42 |
+
2/checkpoint-1400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
43 |
+
2/checkpoint-1404/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
44 |
+
2/checkpoint-200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
45 |
+
2/checkpoint-300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
46 |
+
2/checkpoint-400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
47 |
+
2/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
48 |
+
2/checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
49 |
+
2/checkpoint-700/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
50 |
+
2/checkpoint-800/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
51 |
+
2/checkpoint-900/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
52 |
+
2/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
2/README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: other
|
4 |
+
base_model: /root/autodl-tmp/Qwen3-8B
|
5 |
+
tags:
|
6 |
+
- llama-factory
|
7 |
+
- lora
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: '2'
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# 2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [/root/autodl-tmp/Qwen3-8B](https://huggingface.co//root/autodl-tmp/Qwen3-8B) on the LAW and the LAWlegal datasets.
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 1
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 2
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 16
|
46 |
+
- total_eval_batch_size: 16
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- num_epochs: 1.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
### Framework versions
|
57 |
+
|
58 |
+
- PEFT 0.15.1
|
59 |
+
- Transformers 4.51.3
|
60 |
+
- Pytorch 2.3.0+cu121
|
61 |
+
- Datasets 3.5.0
|
62 |
+
- Tokenizers 0.21.0
|
2/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/root/autodl-tmp/Qwen3-8B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 8,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 4,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"q_proj",
|
28 |
+
"k_proj",
|
29 |
+
"v_proj",
|
30 |
+
"up_proj",
|
31 |
+
"down_proj",
|
32 |
+
"gate_proj",
|
33 |
+
"o_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": true
|
39 |
+
}
|
2/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a8b269cca579b1edb239928e0d508ce1b9a87a02089570c091b785832df8bcd
|
3 |
+
size 21889736
|
2/added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
2/all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.9995550413811516,
|
3 |
+
"num_input_tokens_seen": 29121176,
|
4 |
+
"total_flos": 1.3243117909594604e+18,
|
5 |
+
"train_loss": 0.19406711987280778,
|
6 |
+
"train_runtime": 19252.8015,
|
7 |
+
"train_samples_per_second": 1.167,
|
8 |
+
"train_steps_per_second": 0.073
|
9 |
+
}
|
2/checkpoint-100/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /root/autodl-tmp/Qwen3-8B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.1
|
2/checkpoint-100/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/root/autodl-tmp/Qwen3-8B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 8,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 4,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"q_proj",
|
28 |
+
"k_proj",
|
29 |
+
"v_proj",
|
30 |
+
"up_proj",
|
31 |
+
"down_proj",
|
32 |
+
"gate_proj",
|
33 |
+
"o_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": true
|
39 |
+
}
|
2/checkpoint-100/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fe6ad31d909f41448594ba6946f7e00f439e6275f85fd4aee80fdd273d4e5c3
|
3 |
+
size 21889736
|
2/checkpoint-100/added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
2/checkpoint-100/global_step100/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d40b8c4949d723df5ed2c9ea72d6290c4f8464a72c50f66a9caa526b3e3051b9
|
3 |
+
size 133228077
|
2/checkpoint-100/global_step100/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7037c0521ea824ca44d0543c3100740c3b3aaf4190b5e3df1524b69b9b1d90cb
|
3 |
+
size 65501576
|
2/checkpoint-100/global_step100/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ce27b3ccfdf5ca6a8cd2398eca54fc0e59b06459f6c4970ff4d8137dd6c22d3
|
3 |
+
size 65501704
|
2/checkpoint-100/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step100
|
2/checkpoint-100/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2/checkpoint-100/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4
|
3 |
+
size 14512
|
2/checkpoint-100/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6
|
3 |
+
size 14512
|
2/checkpoint-100/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b89769ae34d6c4b2010219db05cd08bd2e022e9ebb9d70a0d02c0d5adec44d84
|
3 |
+
size 1064
|
2/checkpoint-100/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
2/checkpoint-100/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
2/checkpoint-100/tokenizer_config.json
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"extra_special_tokens": {},
|
235 |
+
"model_max_length": 131072,
|
236 |
+
"pad_token": "<|endoftext|>",
|
237 |
+
"padding_side": "right",
|
238 |
+
"split_special_tokens": false,
|
239 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
240 |
+
"unk_token": null
|
241 |
+
}
|
2/checkpoint-100/trainer_state.json
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.07119337901575154,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 100,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.003559668950787577,
|
14 |
+
"grad_norm": 1.069462776184082,
|
15 |
+
"learning_rate": 9.999799726899262e-05,
|
16 |
+
"loss": 1.4623,
|
17 |
+
"num_input_tokens_seen": 97000,
|
18 |
+
"step": 5
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 0.007119337901575154,
|
22 |
+
"grad_norm": 0.6442700624465942,
|
23 |
+
"learning_rate": 9.998986144924251e-05,
|
24 |
+
"loss": 1.0085,
|
25 |
+
"num_input_tokens_seen": 185728,
|
26 |
+
"step": 10
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01067900685236273,
|
30 |
+
"grad_norm": 0.7749446630477905,
|
31 |
+
"learning_rate": 9.997546838764065e-05,
|
32 |
+
"loss": 0.8166,
|
33 |
+
"num_input_tokens_seen": 274048,
|
34 |
+
"step": 15
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 0.014238675803150308,
|
38 |
+
"grad_norm": 0.6821078658103943,
|
39 |
+
"learning_rate": 9.995481988576968e-05,
|
40 |
+
"loss": 0.6584,
|
41 |
+
"num_input_tokens_seen": 395024,
|
42 |
+
"step": 20
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 0.017798344753937885,
|
46 |
+
"grad_norm": 0.6945608258247375,
|
47 |
+
"learning_rate": 9.992791852820709e-05,
|
48 |
+
"loss": 0.4809,
|
49 |
+
"num_input_tokens_seen": 484056,
|
50 |
+
"step": 25
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.02135801370472546,
|
54 |
+
"grad_norm": 0.30774927139282227,
|
55 |
+
"learning_rate": 9.989476768220168e-05,
|
56 |
+
"loss": 0.3719,
|
57 |
+
"num_input_tokens_seen": 588744,
|
58 |
+
"step": 30
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.024917682655513036,
|
62 |
+
"grad_norm": 0.3996995985507965,
|
63 |
+
"learning_rate": 9.985537149725205e-05,
|
64 |
+
"loss": 0.3598,
|
65 |
+
"num_input_tokens_seen": 687824,
|
66 |
+
"step": 35
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.028477351606300615,
|
70 |
+
"grad_norm": 0.26959237456321716,
|
71 |
+
"learning_rate": 9.980973490458728e-05,
|
72 |
+
"loss": 0.3405,
|
73 |
+
"num_input_tokens_seen": 810104,
|
74 |
+
"step": 40
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.03203702055708819,
|
78 |
+
"grad_norm": 0.26429229974746704,
|
79 |
+
"learning_rate": 9.97578636165496e-05,
|
80 |
+
"loss": 0.3165,
|
81 |
+
"num_input_tokens_seen": 910048,
|
82 |
+
"step": 45
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.03559668950787577,
|
86 |
+
"grad_norm": 0.32172468304634094,
|
87 |
+
"learning_rate": 9.969976412587944e-05,
|
88 |
+
"loss": 0.292,
|
89 |
+
"num_input_tokens_seen": 1022144,
|
90 |
+
"step": 50
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.039156358458663346,
|
94 |
+
"grad_norm": 0.28077825903892517,
|
95 |
+
"learning_rate": 9.96354437049027e-05,
|
96 |
+
"loss": 0.2923,
|
97 |
+
"num_input_tokens_seen": 1126152,
|
98 |
+
"step": 55
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.04271602740945092,
|
102 |
+
"grad_norm": 0.2883082926273346,
|
103 |
+
"learning_rate": 9.956491040462052e-05,
|
104 |
+
"loss": 0.2807,
|
105 |
+
"num_input_tokens_seen": 1252376,
|
106 |
+
"step": 60
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.0462756963602385,
|
110 |
+
"grad_norm": 0.314687043428421,
|
111 |
+
"learning_rate": 9.948817305370143e-05,
|
112 |
+
"loss": 0.2779,
|
113 |
+
"num_input_tokens_seen": 1353176,
|
114 |
+
"step": 65
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.04983536531102607,
|
118 |
+
"grad_norm": 0.38759657740592957,
|
119 |
+
"learning_rate": 9.94052412573764e-05,
|
120 |
+
"loss": 0.2632,
|
121 |
+
"num_input_tokens_seen": 1458928,
|
122 |
+
"step": 70
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.05339503426181365,
|
126 |
+
"grad_norm": 0.3042629063129425,
|
127 |
+
"learning_rate": 9.931612539623643e-05,
|
128 |
+
"loss": 0.28,
|
129 |
+
"num_input_tokens_seen": 1550808,
|
130 |
+
"step": 75
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.05695470321260123,
|
134 |
+
"grad_norm": 0.2713088393211365,
|
135 |
+
"learning_rate": 9.922083662493329e-05,
|
136 |
+
"loss": 0.2927,
|
137 |
+
"num_input_tokens_seen": 1658104,
|
138 |
+
"step": 80
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 0.060514372163388806,
|
142 |
+
"grad_norm": 0.2769795060157776,
|
143 |
+
"learning_rate": 9.911938687078324e-05,
|
144 |
+
"loss": 0.2728,
|
145 |
+
"num_input_tokens_seen": 1763840,
|
146 |
+
"step": 85
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.06407404111417637,
|
150 |
+
"grad_norm": 0.3135468363761902,
|
151 |
+
"learning_rate": 9.901178883227414e-05,
|
152 |
+
"loss": 0.2562,
|
153 |
+
"num_input_tokens_seen": 1885016,
|
154 |
+
"step": 90
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.06763371006496396,
|
158 |
+
"grad_norm": 0.3024243116378784,
|
159 |
+
"learning_rate": 9.889805597747588e-05,
|
160 |
+
"loss": 0.2564,
|
161 |
+
"num_input_tokens_seen": 2001056,
|
162 |
+
"step": 95
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 0.07119337901575154,
|
166 |
+
"grad_norm": 0.29715123772621155,
|
167 |
+
"learning_rate": 9.877820254235471e-05,
|
168 |
+
"loss": 0.2392,
|
169 |
+
"num_input_tokens_seen": 2076528,
|
170 |
+
"step": 100
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"logging_steps": 5,
|
174 |
+
"max_steps": 1404,
|
175 |
+
"num_input_tokens_seen": 2076528,
|
176 |
+
"num_train_epochs": 1,
|
177 |
+
"save_steps": 100,
|
178 |
+
"stateful_callbacks": {
|
179 |
+
"TrainerControl": {
|
180 |
+
"args": {
|
181 |
+
"should_epoch_stop": false,
|
182 |
+
"should_evaluate": false,
|
183 |
+
"should_log": false,
|
184 |
+
"should_save": true,
|
185 |
+
"should_training_stop": false
|
186 |
+
},
|
187 |
+
"attributes": {}
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"total_flos": 9.443198752731955e+16,
|
191 |
+
"train_batch_size": 1,
|
192 |
+
"trial_name": null,
|
193 |
+
"trial_params": null
|
194 |
+
}
|
2/checkpoint-100/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53d6f2b6ddc39413c7f5106d4dfc20a60221e892597125a4051acc98e75cf41e
|
3 |
+
size 7352
|
2/checkpoint-100/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2/checkpoint-100/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
2/checkpoint-1000/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /root/autodl-tmp/Qwen3-8B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.1
|
2/checkpoint-1000/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/root/autodl-tmp/Qwen3-8B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 8,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 4,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"q_proj",
|
28 |
+
"k_proj",
|
29 |
+
"v_proj",
|
30 |
+
"up_proj",
|
31 |
+
"down_proj",
|
32 |
+
"gate_proj",
|
33 |
+
"o_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": true
|
39 |
+
}
|
2/checkpoint-1000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ea33f60b95b36233813970b1cad9aebe8d9f0bf1379369bdac3623d2f62af7f
|
3 |
+
size 21889736
|
2/checkpoint-1000/added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
2/checkpoint-1000/global_step1000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e82d63a880cfb762ee5a1095a9b9c8394f33ab337ec8d6e8ca21d5c4e95d4be
|
3 |
+
size 133228077
|
2/checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ca6ecd594b87e44bb2fe093cb7a59f8eab0f8bd785157765d6e294cb1c95159
|
3 |
+
size 65501576
|
2/checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39cae1e945fe56433b3281f0469ce50930c8a438658f65ebde8e8e499ccbc08c
|
3 |
+
size 65501704
|
2/checkpoint-1000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1000
|
2/checkpoint-1000/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2/checkpoint-1000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4
|
3 |
+
size 14512
|
2/checkpoint-1000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6
|
3 |
+
size 14512
|
2/checkpoint-1000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ea813e47c515744a6308c8143c3b1d70b704d9e8500020af4d6e28d64e8ebe0
|
3 |
+
size 1064
|
2/checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
2/checkpoint-1000/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
2/checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"extra_special_tokens": {},
|
235 |
+
"model_max_length": 131072,
|
236 |
+
"pad_token": "<|endoftext|>",
|
237 |
+
"padding_side": "right",
|
238 |
+
"split_special_tokens": false,
|
239 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
240 |
+
"unk_token": null
|
241 |
+
}
|
2/checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,1634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.7119337901575153,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 1000,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.003559668950787577,
|
14 |
+
"grad_norm": 1.069462776184082,
|
15 |
+
"learning_rate": 9.999799726899262e-05,
|
16 |
+
"loss": 1.4623,
|
17 |
+
"num_input_tokens_seen": 97000,
|
18 |
+
"step": 5
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 0.007119337901575154,
|
22 |
+
"grad_norm": 0.6442700624465942,
|
23 |
+
"learning_rate": 9.998986144924251e-05,
|
24 |
+
"loss": 1.0085,
|
25 |
+
"num_input_tokens_seen": 185728,
|
26 |
+
"step": 10
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01067900685236273,
|
30 |
+
"grad_norm": 0.7749446630477905,
|
31 |
+
"learning_rate": 9.997546838764065e-05,
|
32 |
+
"loss": 0.8166,
|
33 |
+
"num_input_tokens_seen": 274048,
|
34 |
+
"step": 15
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 0.014238675803150308,
|
38 |
+
"grad_norm": 0.6821078658103943,
|
39 |
+
"learning_rate": 9.995481988576968e-05,
|
40 |
+
"loss": 0.6584,
|
41 |
+
"num_input_tokens_seen": 395024,
|
42 |
+
"step": 20
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 0.017798344753937885,
|
46 |
+
"grad_norm": 0.6945608258247375,
|
47 |
+
"learning_rate": 9.992791852820709e-05,
|
48 |
+
"loss": 0.4809,
|
49 |
+
"num_input_tokens_seen": 484056,
|
50 |
+
"step": 25
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.02135801370472546,
|
54 |
+
"grad_norm": 0.30774927139282227,
|
55 |
+
"learning_rate": 9.989476768220168e-05,
|
56 |
+
"loss": 0.3719,
|
57 |
+
"num_input_tokens_seen": 588744,
|
58 |
+
"step": 30
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.024917682655513036,
|
62 |
+
"grad_norm": 0.3996995985507965,
|
63 |
+
"learning_rate": 9.985537149725205e-05,
|
64 |
+
"loss": 0.3598,
|
65 |
+
"num_input_tokens_seen": 687824,
|
66 |
+
"step": 35
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.028477351606300615,
|
70 |
+
"grad_norm": 0.26959237456321716,
|
71 |
+
"learning_rate": 9.980973490458728e-05,
|
72 |
+
"loss": 0.3405,
|
73 |
+
"num_input_tokens_seen": 810104,
|
74 |
+
"step": 40
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.03203702055708819,
|
78 |
+
"grad_norm": 0.26429229974746704,
|
79 |
+
"learning_rate": 9.97578636165496e-05,
|
80 |
+
"loss": 0.3165,
|
81 |
+
"num_input_tokens_seen": 910048,
|
82 |
+
"step": 45
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.03559668950787577,
|
86 |
+
"grad_norm": 0.32172468304634094,
|
87 |
+
"learning_rate": 9.969976412587944e-05,
|
88 |
+
"loss": 0.292,
|
89 |
+
"num_input_tokens_seen": 1022144,
|
90 |
+
"step": 50
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.039156358458663346,
|
94 |
+
"grad_norm": 0.28077825903892517,
|
95 |
+
"learning_rate": 9.96354437049027e-05,
|
96 |
+
"loss": 0.2923,
|
97 |
+
"num_input_tokens_seen": 1126152,
|
98 |
+
"step": 55
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.04271602740945092,
|
102 |
+
"grad_norm": 0.2883082926273346,
|
103 |
+
"learning_rate": 9.956491040462052e-05,
|
104 |
+
"loss": 0.2807,
|
105 |
+
"num_input_tokens_seen": 1252376,
|
106 |
+
"step": 60
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.0462756963602385,
|
110 |
+
"grad_norm": 0.314687043428421,
|
111 |
+
"learning_rate": 9.948817305370143e-05,
|
112 |
+
"loss": 0.2779,
|
113 |
+
"num_input_tokens_seen": 1353176,
|
114 |
+
"step": 65
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.04983536531102607,
|
118 |
+
"grad_norm": 0.38759657740592957,
|
119 |
+
"learning_rate": 9.94052412573764e-05,
|
120 |
+
"loss": 0.2632,
|
121 |
+
"num_input_tokens_seen": 1458928,
|
122 |
+
"step": 70
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.05339503426181365,
|
126 |
+
"grad_norm": 0.3042629063129425,
|
127 |
+
"learning_rate": 9.931612539623643e-05,
|
128 |
+
"loss": 0.28,
|
129 |
+
"num_input_tokens_seen": 1550808,
|
130 |
+
"step": 75
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.05695470321260123,
|
134 |
+
"grad_norm": 0.2713088393211365,
|
135 |
+
"learning_rate": 9.922083662493329e-05,
|
136 |
+
"loss": 0.2927,
|
137 |
+
"num_input_tokens_seen": 1658104,
|
138 |
+
"step": 80
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 0.060514372163388806,
|
142 |
+
"grad_norm": 0.2769795060157776,
|
143 |
+
"learning_rate": 9.911938687078324e-05,
|
144 |
+
"loss": 0.2728,
|
145 |
+
"num_input_tokens_seen": 1763840,
|
146 |
+
"step": 85
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.06407404111417637,
|
150 |
+
"grad_norm": 0.3135468363761902,
|
151 |
+
"learning_rate": 9.901178883227414e-05,
|
152 |
+
"loss": 0.2562,
|
153 |
+
"num_input_tokens_seen": 1885016,
|
154 |
+
"step": 90
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.06763371006496396,
|
158 |
+
"grad_norm": 0.3024243116378784,
|
159 |
+
"learning_rate": 9.889805597747588e-05,
|
160 |
+
"loss": 0.2564,
|
161 |
+
"num_input_tokens_seen": 2001056,
|
162 |
+
"step": 95
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 0.07119337901575154,
|
166 |
+
"grad_norm": 0.29715123772621155,
|
167 |
+
"learning_rate": 9.877820254235471e-05,
|
168 |
+
"loss": 0.2392,
|
169 |
+
"num_input_tokens_seen": 2076528,
|
170 |
+
"step": 100
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.07475304796653912,
|
174 |
+
"grad_norm": 0.3076399564743042,
|
175 |
+
"learning_rate": 9.865224352899119e-05,
|
176 |
+
"loss": 0.264,
|
177 |
+
"num_input_tokens_seen": 2210064,
|
178 |
+
"step": 105
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.07831271691732669,
|
182 |
+
"grad_norm": 0.2700069546699524,
|
183 |
+
"learning_rate": 9.852019470370253e-05,
|
184 |
+
"loss": 0.2483,
|
185 |
+
"num_input_tokens_seen": 2306936,
|
186 |
+
"step": 110
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.08187238586811427,
|
190 |
+
"grad_norm": 0.34573429822921753,
|
191 |
+
"learning_rate": 9.838207259506891e-05,
|
192 |
+
"loss": 0.2462,
|
193 |
+
"num_input_tokens_seen": 2413016,
|
194 |
+
"step": 115
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.08543205481890184,
|
198 |
+
"grad_norm": 0.29131779074668884,
|
199 |
+
"learning_rate": 9.82378944918648e-05,
|
200 |
+
"loss": 0.2403,
|
201 |
+
"num_input_tokens_seen": 2543504,
|
202 |
+
"step": 120
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 0.08899172376968942,
|
206 |
+
"grad_norm": 0.341266930103302,
|
207 |
+
"learning_rate": 9.80876784408948e-05,
|
208 |
+
"loss": 0.2276,
|
209 |
+
"num_input_tokens_seen": 2640240,
|
210 |
+
"step": 125
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 0.092551392720477,
|
214 |
+
"grad_norm": 0.31063246726989746,
|
215 |
+
"learning_rate": 9.793144324473473e-05,
|
216 |
+
"loss": 0.221,
|
217 |
+
"num_input_tokens_seen": 2743912,
|
218 |
+
"step": 130
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.09611106167126457,
|
222 |
+
"grad_norm": 0.3486584722995758,
|
223 |
+
"learning_rate": 9.776920845937816e-05,
|
224 |
+
"loss": 0.2547,
|
225 |
+
"num_input_tokens_seen": 2840632,
|
226 |
+
"step": 135
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.09967073062205214,
|
230 |
+
"grad_norm": 0.3306490182876587,
|
231 |
+
"learning_rate": 9.760099439178852e-05,
|
232 |
+
"loss": 0.2314,
|
233 |
+
"num_input_tokens_seen": 2928208,
|
234 |
+
"step": 140
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.10323039957283972,
|
238 |
+
"grad_norm": 0.37140771746635437,
|
239 |
+
"learning_rate": 9.742682209735727e-05,
|
240 |
+
"loss": 0.221,
|
241 |
+
"num_input_tokens_seen": 3033456,
|
242 |
+
"step": 145
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.1067900685236273,
|
246 |
+
"grad_norm": 0.31432077288627625,
|
247 |
+
"learning_rate": 9.724671337726854e-05,
|
248 |
+
"loss": 0.2158,
|
249 |
+
"num_input_tokens_seen": 3139640,
|
250 |
+
"step": 150
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.11034973747441489,
|
254 |
+
"grad_norm": 0.3638117015361786,
|
255 |
+
"learning_rate": 9.706069077577001e-05,
|
256 |
+
"loss": 0.2277,
|
257 |
+
"num_input_tokens_seen": 3240696,
|
258 |
+
"step": 155
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"epoch": 0.11390940642520246,
|
262 |
+
"grad_norm": 0.2973380982875824,
|
263 |
+
"learning_rate": 9.686877757735127e-05,
|
264 |
+
"loss": 0.2287,
|
265 |
+
"num_input_tokens_seen": 3341736,
|
266 |
+
"step": 160
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.11746907537599004,
|
270 |
+
"grad_norm": 0.318136066198349,
|
271 |
+
"learning_rate": 9.66709978038292e-05,
|
272 |
+
"loss": 0.2201,
|
273 |
+
"num_input_tokens_seen": 3424968,
|
274 |
+
"step": 165
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.12102874432677761,
|
278 |
+
"grad_norm": 0.397605299949646,
|
279 |
+
"learning_rate": 9.646737621134112e-05,
|
280 |
+
"loss": 0.2175,
|
281 |
+
"num_input_tokens_seen": 3534184,
|
282 |
+
"step": 170
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.12458841327756519,
|
286 |
+
"grad_norm": 0.37626489996910095,
|
287 |
+
"learning_rate": 9.625793828724618e-05,
|
288 |
+
"loss": 0.2359,
|
289 |
+
"num_input_tokens_seen": 3631120,
|
290 |
+
"step": 175
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.12814808222835275,
|
294 |
+
"grad_norm": 0.441562294960022,
|
295 |
+
"learning_rate": 9.604271024693495e-05,
|
296 |
+
"loss": 0.2284,
|
297 |
+
"num_input_tokens_seen": 3736360,
|
298 |
+
"step": 180
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.13170775117914035,
|
302 |
+
"grad_norm": 0.3418191969394684,
|
303 |
+
"learning_rate": 9.582171903054816e-05,
|
304 |
+
"loss": 0.2125,
|
305 |
+
"num_input_tokens_seen": 3830560,
|
306 |
+
"step": 185
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.13526742012992793,
|
310 |
+
"grad_norm": 0.40202295780181885,
|
311 |
+
"learning_rate": 9.559499229960451e-05,
|
312 |
+
"loss": 0.2133,
|
313 |
+
"num_input_tokens_seen": 3920536,
|
314 |
+
"step": 190
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.1388270890807155,
|
318 |
+
"grad_norm": 0.29538485407829285,
|
319 |
+
"learning_rate": 9.536255843353832e-05,
|
320 |
+
"loss": 0.1935,
|
321 |
+
"num_input_tokens_seen": 4021840,
|
322 |
+
"step": 195
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"epoch": 0.14238675803150308,
|
326 |
+
"grad_norm": 0.3438551425933838,
|
327 |
+
"learning_rate": 9.512444652614728e-05,
|
328 |
+
"loss": 0.2249,
|
329 |
+
"num_input_tokens_seen": 4123792,
|
330 |
+
"step": 200
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 0.14594642698229066,
|
334 |
+
"grad_norm": 0.31994742155075073,
|
335 |
+
"learning_rate": 9.48806863819507e-05,
|
336 |
+
"loss": 0.2117,
|
337 |
+
"num_input_tokens_seen": 4227968,
|
338 |
+
"step": 205
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.14950609593307823,
|
342 |
+
"grad_norm": 0.2823421359062195,
|
343 |
+
"learning_rate": 9.463130851245898e-05,
|
344 |
+
"loss": 0.2326,
|
345 |
+
"num_input_tokens_seen": 4337096,
|
346 |
+
"step": 210
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.1530657648838658,
|
350 |
+
"grad_norm": 0.36814814805984497,
|
351 |
+
"learning_rate": 9.437634413235436e-05,
|
352 |
+
"loss": 0.2211,
|
353 |
+
"num_input_tokens_seen": 4442592,
|
354 |
+
"step": 215
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.15662543383465338,
|
358 |
+
"grad_norm": 0.31317004561424255,
|
359 |
+
"learning_rate": 9.41158251555839e-05,
|
360 |
+
"loss": 0.1706,
|
361 |
+
"num_input_tokens_seen": 4540672,
|
362 |
+
"step": 220
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.16018510278544096,
|
366 |
+
"grad_norm": 0.34285885095596313,
|
367 |
+
"learning_rate": 9.384978419136468e-05,
|
368 |
+
"loss": 0.2111,
|
369 |
+
"num_input_tokens_seen": 4646952,
|
370 |
+
"step": 225
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 0.16374477173622853,
|
374 |
+
"grad_norm": 0.30709314346313477,
|
375 |
+
"learning_rate": 9.357825454010213e-05,
|
376 |
+
"loss": 0.2043,
|
377 |
+
"num_input_tokens_seen": 4748104,
|
378 |
+
"step": 230
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.1673044406870161,
|
382 |
+
"grad_norm": 0.331566721200943,
|
383 |
+
"learning_rate": 9.330127018922194e-05,
|
384 |
+
"loss": 0.2049,
|
385 |
+
"num_input_tokens_seen": 4857120,
|
386 |
+
"step": 235
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.17086410963780368,
|
390 |
+
"grad_norm": 0.34622254967689514,
|
391 |
+
"learning_rate": 9.301886580891562e-05,
|
392 |
+
"loss": 0.2129,
|
393 |
+
"num_input_tokens_seen": 4967288,
|
394 |
+
"step": 240
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.17442377858859126,
|
398 |
+
"grad_norm": 0.3246297240257263,
|
399 |
+
"learning_rate": 9.273107674780102e-05,
|
400 |
+
"loss": 0.1882,
|
401 |
+
"num_input_tokens_seen": 5077952,
|
402 |
+
"step": 245
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.17798344753937884,
|
406 |
+
"grad_norm": 0.3121411204338074,
|
407 |
+
"learning_rate": 9.243793902849763e-05,
|
408 |
+
"loss": 0.1998,
|
409 |
+
"num_input_tokens_seen": 5170960,
|
410 |
+
"step": 250
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.1815431164901664,
|
414 |
+
"grad_norm": 0.39862558245658875,
|
415 |
+
"learning_rate": 9.213948934311767e-05,
|
416 |
+
"loss": 0.1945,
|
417 |
+
"num_input_tokens_seen": 5281608,
|
418 |
+
"step": 255
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.185102785440954,
|
422 |
+
"grad_norm": 0.30746859312057495,
|
423 |
+
"learning_rate": 9.183576504867327e-05,
|
424 |
+
"loss": 0.1983,
|
425 |
+
"num_input_tokens_seen": 5398464,
|
426 |
+
"step": 260
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 0.18866245439174156,
|
430 |
+
"grad_norm": 0.3460409343242645,
|
431 |
+
"learning_rate": 9.152680416240059e-05,
|
432 |
+
"loss": 0.211,
|
433 |
+
"num_input_tokens_seen": 5503696,
|
434 |
+
"step": 265
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.19222212334252914,
|
438 |
+
"grad_norm": 0.42770832777023315,
|
439 |
+
"learning_rate": 9.121264535700107e-05,
|
440 |
+
"loss": 0.1943,
|
441 |
+
"num_input_tokens_seen": 5619400,
|
442 |
+
"step": 270
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 0.19578179229331671,
|
446 |
+
"grad_norm": 0.30582112073898315,
|
447 |
+
"learning_rate": 9.089332795580086e-05,
|
448 |
+
"loss": 0.186,
|
449 |
+
"num_input_tokens_seen": 5719208,
|
450 |
+
"step": 275
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.1993414612441043,
|
454 |
+
"grad_norm": 0.38887447118759155,
|
455 |
+
"learning_rate": 9.056889192782866e-05,
|
456 |
+
"loss": 0.2011,
|
457 |
+
"num_input_tokens_seen": 5814880,
|
458 |
+
"step": 280
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.20290113019489187,
|
462 |
+
"grad_norm": 0.4006999731063843,
|
463 |
+
"learning_rate": 9.023937788281278e-05,
|
464 |
+
"loss": 0.1941,
|
465 |
+
"num_input_tokens_seen": 5910072,
|
466 |
+
"step": 285
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.20646079914567944,
|
470 |
+
"grad_norm": 0.373165100812912,
|
471 |
+
"learning_rate": 8.990482706609805e-05,
|
472 |
+
"loss": 0.1893,
|
473 |
+
"num_input_tokens_seen": 6022608,
|
474 |
+
"step": 290
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.21002046809646702,
|
478 |
+
"grad_norm": 0.3396100699901581,
|
479 |
+
"learning_rate": 8.95652813534831e-05,
|
480 |
+
"loss": 0.1945,
|
481 |
+
"num_input_tokens_seen": 6135608,
|
482 |
+
"step": 295
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.2135801370472546,
|
486 |
+
"grad_norm": 0.4196370542049408,
|
487 |
+
"learning_rate": 8.922078324597879e-05,
|
488 |
+
"loss": 0.2082,
|
489 |
+
"num_input_tokens_seen": 6241088,
|
490 |
+
"step": 300
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 0.2171398059980422,
|
494 |
+
"grad_norm": 0.39760822057724,
|
495 |
+
"learning_rate": 8.88713758644883e-05,
|
496 |
+
"loss": 0.1875,
|
497 |
+
"num_input_tokens_seen": 6353520,
|
498 |
+
"step": 305
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 0.22069947494882977,
|
502 |
+
"grad_norm": 0.30599263310432434,
|
503 |
+
"learning_rate": 8.851710294440973e-05,
|
504 |
+
"loss": 0.1876,
|
505 |
+
"num_input_tokens_seen": 6454480,
|
506 |
+
"step": 310
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.22425914389961735,
|
510 |
+
"grad_norm": 0.4323524832725525,
|
511 |
+
"learning_rate": 8.815800883016168e-05,
|
512 |
+
"loss": 0.2053,
|
513 |
+
"num_input_tokens_seen": 6563816,
|
514 |
+
"step": 315
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.22781881285040492,
|
518 |
+
"grad_norm": 0.3267993927001953,
|
519 |
+
"learning_rate": 8.779413846963267e-05,
|
520 |
+
"loss": 0.1994,
|
521 |
+
"num_input_tokens_seen": 6658448,
|
522 |
+
"step": 320
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.2313784818011925,
|
526 |
+
"grad_norm": 0.372569739818573,
|
527 |
+
"learning_rate": 8.742553740855506e-05,
|
528 |
+
"loss": 0.1768,
|
529 |
+
"num_input_tokens_seen": 6772528,
|
530 |
+
"step": 325
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.23493815075198007,
|
534 |
+
"grad_norm": 0.3330164849758148,
|
535 |
+
"learning_rate": 8.705225178480398e-05,
|
536 |
+
"loss": 0.1916,
|
537 |
+
"num_input_tokens_seen": 6875864,
|
538 |
+
"step": 330
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 0.23849781970276765,
|
542 |
+
"grad_norm": 0.4003218710422516,
|
543 |
+
"learning_rate": 8.66743283226223e-05,
|
544 |
+
"loss": 0.2065,
|
545 |
+
"num_input_tokens_seen": 6972880,
|
546 |
+
"step": 335
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 0.24205748865355523,
|
550 |
+
"grad_norm": 0.3475089371204376,
|
551 |
+
"learning_rate": 8.629181432677213e-05,
|
552 |
+
"loss": 0.2037,
|
553 |
+
"num_input_tokens_seen": 7091480,
|
554 |
+
"step": 340
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.2456171576043428,
|
558 |
+
"grad_norm": 0.29793596267700195,
|
559 |
+
"learning_rate": 8.59047576766137e-05,
|
560 |
+
"loss": 0.1915,
|
561 |
+
"num_input_tokens_seen": 7198744,
|
562 |
+
"step": 345
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.24917682655513038,
|
566 |
+
"grad_norm": 0.39443179965019226,
|
567 |
+
"learning_rate": 8.551320682011228e-05,
|
568 |
+
"loss": 0.1884,
|
569 |
+
"num_input_tokens_seen": 7306808,
|
570 |
+
"step": 350
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.2527364955059179,
|
574 |
+
"grad_norm": 0.37115100026130676,
|
575 |
+
"learning_rate": 8.511721076777389e-05,
|
576 |
+
"loss": 0.1932,
|
577 |
+
"num_input_tokens_seen": 7414544,
|
578 |
+
"step": 355
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.2562961644567055,
|
582 |
+
"grad_norm": 0.3560400903224945,
|
583 |
+
"learning_rate": 8.471681908651067e-05,
|
584 |
+
"loss": 0.1879,
|
585 |
+
"num_input_tokens_seen": 7526376,
|
586 |
+
"step": 360
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.25985583340749313,
|
590 |
+
"grad_norm": 0.36505258083343506,
|
591 |
+
"learning_rate": 8.43120818934367e-05,
|
592 |
+
"loss": 0.1882,
|
593 |
+
"num_input_tokens_seen": 7622440,
|
594 |
+
"step": 365
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.2634155023582807,
|
598 |
+
"grad_norm": 0.3832385241985321,
|
599 |
+
"learning_rate": 8.390304984959454e-05,
|
600 |
+
"loss": 0.1955,
|
601 |
+
"num_input_tokens_seen": 7729176,
|
602 |
+
"step": 370
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.2669751713090683,
|
606 |
+
"grad_norm": 0.32355767488479614,
|
607 |
+
"learning_rate": 8.348977415361434e-05,
|
608 |
+
"loss": 0.1977,
|
609 |
+
"num_input_tokens_seen": 7846344,
|
610 |
+
"step": 375
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"epoch": 0.27053484025985586,
|
614 |
+
"grad_norm": 0.31665217876434326,
|
615 |
+
"learning_rate": 8.3072306535305e-05,
|
616 |
+
"loss": 0.1944,
|
617 |
+
"num_input_tokens_seen": 7945632,
|
618 |
+
"step": 380
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.27409450921064343,
|
622 |
+
"grad_norm": 0.3798852562904358,
|
623 |
+
"learning_rate": 8.265069924917925e-05,
|
624 |
+
"loss": 0.1926,
|
625 |
+
"num_input_tokens_seen": 8048344,
|
626 |
+
"step": 385
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.277654178161431,
|
630 |
+
"grad_norm": 0.3776335120201111,
|
631 |
+
"learning_rate": 8.222500506791304e-05,
|
632 |
+
"loss": 0.2007,
|
633 |
+
"num_input_tokens_seen": 8154184,
|
634 |
+
"step": 390
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.2812138471122186,
|
638 |
+
"grad_norm": 0.3042481243610382,
|
639 |
+
"learning_rate": 8.179527727573975e-05,
|
640 |
+
"loss": 0.1763,
|
641 |
+
"num_input_tokens_seen": 8268128,
|
642 |
+
"step": 395
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.28477351606300616,
|
646 |
+
"grad_norm": 0.3481425940990448,
|
647 |
+
"learning_rate": 8.136156966178081e-05,
|
648 |
+
"loss": 0.1897,
|
649 |
+
"num_input_tokens_seen": 8366648,
|
650 |
+
"step": 400
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.28833318501379374,
|
654 |
+
"grad_norm": 0.345595121383667,
|
655 |
+
"learning_rate": 8.092393651331275e-05,
|
656 |
+
"loss": 0.1998,
|
657 |
+
"num_input_tokens_seen": 8473872,
|
658 |
+
"step": 405
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 0.2918928539645813,
|
662 |
+
"grad_norm": 0.30839142203330994,
|
663 |
+
"learning_rate": 8.048243260897217e-05,
|
664 |
+
"loss": 0.1844,
|
665 |
+
"num_input_tokens_seen": 8575560,
|
666 |
+
"step": 410
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 0.2954525229153689,
|
670 |
+
"grad_norm": 0.3298119008541107,
|
671 |
+
"learning_rate": 8.003711321189895e-05,
|
672 |
+
"loss": 0.1816,
|
673 |
+
"num_input_tokens_seen": 8692528,
|
674 |
+
"step": 415
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.29901219186615646,
|
678 |
+
"grad_norm": 0.3186253607273102,
|
679 |
+
"learning_rate": 7.95880340628191e-05,
|
680 |
+
"loss": 0.1894,
|
681 |
+
"num_input_tokens_seen": 8792544,
|
682 |
+
"step": 420
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.30257186081694404,
|
686 |
+
"grad_norm": 0.3161162734031677,
|
687 |
+
"learning_rate": 7.913525137306756e-05,
|
688 |
+
"loss": 0.1859,
|
689 |
+
"num_input_tokens_seen": 8911488,
|
690 |
+
"step": 425
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.3061315297677316,
|
694 |
+
"grad_norm": 0.36929574608802795,
|
695 |
+
"learning_rate": 7.86788218175523e-05,
|
696 |
+
"loss": 0.1867,
|
697 |
+
"num_input_tokens_seen": 9015008,
|
698 |
+
"step": 430
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.3096911987185192,
|
702 |
+
"grad_norm": 0.5688495635986328,
|
703 |
+
"learning_rate": 7.821880252766025e-05,
|
704 |
+
"loss": 0.2022,
|
705 |
+
"num_input_tokens_seen": 9115512,
|
706 |
+
"step": 435
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.31325086766930677,
|
710 |
+
"grad_norm": 0.3410090506076813,
|
711 |
+
"learning_rate": 7.775525108410615e-05,
|
712 |
+
"loss": 0.1674,
|
713 |
+
"num_input_tokens_seen": 9216312,
|
714 |
+
"step": 440
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 0.31681053662009434,
|
718 |
+
"grad_norm": 0.41320088505744934,
|
719 |
+
"learning_rate": 7.728822550972523e-05,
|
720 |
+
"loss": 0.1834,
|
721 |
+
"num_input_tokens_seen": 9319432,
|
722 |
+
"step": 445
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.3203702055708819,
|
726 |
+
"grad_norm": 0.3464307487010956,
|
727 |
+
"learning_rate": 7.681778426221042e-05,
|
728 |
+
"loss": 0.1671,
|
729 |
+
"num_input_tokens_seen": 9426264,
|
730 |
+
"step": 450
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.3239298745216695,
|
734 |
+
"grad_norm": 0.42251551151275635,
|
735 |
+
"learning_rate": 7.634398622679517e-05,
|
736 |
+
"loss": 0.1873,
|
737 |
+
"num_input_tokens_seen": 9536096,
|
738 |
+
"step": 455
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.32748954347245707,
|
742 |
+
"grad_norm": 0.41400083899497986,
|
743 |
+
"learning_rate": 7.586689070888284e-05,
|
744 |
+
"loss": 0.1915,
|
745 |
+
"num_input_tokens_seen": 9648984,
|
746 |
+
"step": 460
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.33104921242324464,
|
750 |
+
"grad_norm": 0.35248515009880066,
|
751 |
+
"learning_rate": 7.53865574266234e-05,
|
752 |
+
"loss": 0.1822,
|
753 |
+
"num_input_tokens_seen": 9772136,
|
754 |
+
"step": 465
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.3346088813740322,
|
758 |
+
"grad_norm": 0.43567249178886414,
|
759 |
+
"learning_rate": 7.490304650343841e-05,
|
760 |
+
"loss": 0.185,
|
761 |
+
"num_input_tokens_seen": 9873504,
|
762 |
+
"step": 470
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.3381685503248198,
|
766 |
+
"grad_norm": 0.4128562808036804,
|
767 |
+
"learning_rate": 7.441641846049556e-05,
|
768 |
+
"loss": 0.1794,
|
769 |
+
"num_input_tokens_seen": 9994952,
|
770 |
+
"step": 475
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.34172821927560737,
|
774 |
+
"grad_norm": 0.45978060364723206,
|
775 |
+
"learning_rate": 7.3926734209133e-05,
|
776 |
+
"loss": 0.1694,
|
777 |
+
"num_input_tokens_seen": 10096568,
|
778 |
+
"step": 480
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 0.34528788822639495,
|
782 |
+
"grad_norm": 0.42638832330703735,
|
783 |
+
"learning_rate": 7.343405504323519e-05,
|
784 |
+
"loss": 0.172,
|
785 |
+
"num_input_tokens_seen": 10193976,
|
786 |
+
"step": 485
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.3488475571771825,
|
790 |
+
"grad_norm": 0.31733188033103943,
|
791 |
+
"learning_rate": 7.293844263156072e-05,
|
792 |
+
"loss": 0.1722,
|
793 |
+
"num_input_tokens_seen": 10314512,
|
794 |
+
"step": 490
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.3524072261279701,
|
798 |
+
"grad_norm": 0.4016326665878296,
|
799 |
+
"learning_rate": 7.243995901002312e-05,
|
800 |
+
"loss": 0.1932,
|
801 |
+
"num_input_tokens_seen": 10420280,
|
802 |
+
"step": 495
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.3559668950787577,
|
806 |
+
"grad_norm": 0.30861759185791016,
|
807 |
+
"learning_rate": 7.193866657392597e-05,
|
808 |
+
"loss": 0.1778,
|
809 |
+
"num_input_tokens_seen": 10512840,
|
810 |
+
"step": 500
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.35952656402954525,
|
814 |
+
"grad_norm": 0.358877032995224,
|
815 |
+
"learning_rate": 7.143462807015271e-05,
|
816 |
+
"loss": 0.1595,
|
817 |
+
"num_input_tokens_seen": 10601008,
|
818 |
+
"step": 505
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.3630862329803328,
|
822 |
+
"grad_norm": 0.34301072359085083,
|
823 |
+
"learning_rate": 7.092790658931273e-05,
|
824 |
+
"loss": 0.163,
|
825 |
+
"num_input_tokens_seen": 10686288,
|
826 |
+
"step": 510
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 0.3666459019311204,
|
830 |
+
"grad_norm": 0.32205110788345337,
|
831 |
+
"learning_rate": 7.041856555784421e-05,
|
832 |
+
"loss": 0.181,
|
833 |
+
"num_input_tokens_seen": 10792520,
|
834 |
+
"step": 515
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 0.370205570881908,
|
838 |
+
"grad_norm": 0.44235751032829285,
|
839 |
+
"learning_rate": 6.990666873007505e-05,
|
840 |
+
"loss": 0.1762,
|
841 |
+
"num_input_tokens_seen": 10885304,
|
842 |
+
"step": 520
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.37376523983269555,
|
846 |
+
"grad_norm": 0.36452656984329224,
|
847 |
+
"learning_rate": 6.939228018024275e-05,
|
848 |
+
"loss": 0.1647,
|
849 |
+
"num_input_tokens_seen": 10993776,
|
850 |
+
"step": 525
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.3773249087834831,
|
854 |
+
"grad_norm": 0.5452892184257507,
|
855 |
+
"learning_rate": 6.887546429447419e-05,
|
856 |
+
"loss": 0.1669,
|
857 |
+
"num_input_tokens_seen": 11110832,
|
858 |
+
"step": 530
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.3808845777342707,
|
862 |
+
"grad_norm": 0.517644464969635,
|
863 |
+
"learning_rate": 6.835628576272638e-05,
|
864 |
+
"loss": 0.1873,
|
865 |
+
"num_input_tokens_seen": 11201704,
|
866 |
+
"step": 535
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.3844442466850583,
|
870 |
+
"grad_norm": 0.3548191785812378,
|
871 |
+
"learning_rate": 6.783480957068934e-05,
|
872 |
+
"loss": 0.1711,
|
873 |
+
"num_input_tokens_seen": 11293424,
|
874 |
+
"step": 540
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 0.38800391563584585,
|
878 |
+
"grad_norm": 0.3615559935569763,
|
879 |
+
"learning_rate": 6.731110099165164e-05,
|
880 |
+
"loss": 0.1764,
|
881 |
+
"num_input_tokens_seen": 11394280,
|
882 |
+
"step": 545
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.39156358458663343,
|
886 |
+
"grad_norm": 0.4043658375740051,
|
887 |
+
"learning_rate": 6.678522557833024e-05,
|
888 |
+
"loss": 0.184,
|
889 |
+
"num_input_tokens_seen": 11477712,
|
890 |
+
"step": 550
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.395123253537421,
|
894 |
+
"grad_norm": 0.3802790343761444,
|
895 |
+
"learning_rate": 6.625724915466526e-05,
|
896 |
+
"loss": 0.1681,
|
897 |
+
"num_input_tokens_seen": 11593608,
|
898 |
+
"step": 555
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.3986829224882086,
|
902 |
+
"grad_norm": 0.5214163661003113,
|
903 |
+
"learning_rate": 6.572723780758069e-05,
|
904 |
+
"loss": 0.1764,
|
905 |
+
"num_input_tokens_seen": 11706168,
|
906 |
+
"step": 560
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.40224259143899616,
|
910 |
+
"grad_norm": 0.4910968840122223,
|
911 |
+
"learning_rate": 6.519525787871235e-05,
|
912 |
+
"loss": 0.1841,
|
913 |
+
"num_input_tokens_seen": 11836904,
|
914 |
+
"step": 565
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.40580226038978373,
|
918 |
+
"grad_norm": 0.508994996547699,
|
919 |
+
"learning_rate": 6.466137595610388e-05,
|
920 |
+
"loss": 0.1755,
|
921 |
+
"num_input_tokens_seen": 11952440,
|
922 |
+
"step": 570
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 0.4093619293405713,
|
926 |
+
"grad_norm": 0.3509501516819,
|
927 |
+
"learning_rate": 6.412565886587185e-05,
|
928 |
+
"loss": 0.1661,
|
929 |
+
"num_input_tokens_seen": 12050640,
|
930 |
+
"step": 575
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"epoch": 0.4129215982913589,
|
934 |
+
"grad_norm": 0.43870943784713745,
|
935 |
+
"learning_rate": 6.358817366384122e-05,
|
936 |
+
"loss": 0.1835,
|
937 |
+
"num_input_tokens_seen": 12159120,
|
938 |
+
"step": 580
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.41648126724214646,
|
942 |
+
"grad_norm": 0.45170462131500244,
|
943 |
+
"learning_rate": 6.304898762715186e-05,
|
944 |
+
"loss": 0.1668,
|
945 |
+
"num_input_tokens_seen": 12264824,
|
946 |
+
"step": 585
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 0.42004093619293403,
|
950 |
+
"grad_norm": 0.3374248445034027,
|
951 |
+
"learning_rate": 6.250816824583747e-05,
|
952 |
+
"loss": 0.1731,
|
953 |
+
"num_input_tokens_seen": 12382032,
|
954 |
+
"step": 590
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.4236006051437216,
|
958 |
+
"grad_norm": 0.3665522336959839,
|
959 |
+
"learning_rate": 6.19657832143779e-05,
|
960 |
+
"loss": 0.1558,
|
961 |
+
"num_input_tokens_seen": 12494104,
|
962 |
+
"step": 595
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.4271602740945092,
|
966 |
+
"grad_norm": 0.32165008783340454,
|
967 |
+
"learning_rate": 6.142190042322569e-05,
|
968 |
+
"loss": 0.1763,
|
969 |
+
"num_input_tokens_seen": 12609472,
|
970 |
+
"step": 600
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.43071994304529676,
|
974 |
+
"grad_norm": 0.47890809178352356,
|
975 |
+
"learning_rate": 6.087658795030837e-05,
|
976 |
+
"loss": 0.1795,
|
977 |
+
"num_input_tokens_seen": 12723800,
|
978 |
+
"step": 605
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.4342796119960844,
|
982 |
+
"grad_norm": 0.3581695556640625,
|
983 |
+
"learning_rate": 6.032991405250702e-05,
|
984 |
+
"loss": 0.1658,
|
985 |
+
"num_input_tokens_seen": 12812152,
|
986 |
+
"step": 610
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.43783928094687197,
|
990 |
+
"grad_norm": 0.3896292746067047,
|
991 |
+
"learning_rate": 5.9781947157112536e-05,
|
992 |
+
"loss": 0.1781,
|
993 |
+
"num_input_tokens_seen": 12913336,
|
994 |
+
"step": 615
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.44139894989765954,
|
998 |
+
"grad_norm": 0.3902624845504761,
|
999 |
+
"learning_rate": 5.9232755853260635e-05,
|
1000 |
+
"loss": 0.1712,
|
1001 |
+
"num_input_tokens_seen": 13000856,
|
1002 |
+
"step": 620
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 0.4449586188484471,
|
1006 |
+
"grad_norm": 0.5472461581230164,
|
1007 |
+
"learning_rate": 5.868240888334653e-05,
|
1008 |
+
"loss": 0.1803,
|
1009 |
+
"num_input_tokens_seen": 13110056,
|
1010 |
+
"step": 625
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.4485182877992347,
|
1014 |
+
"grad_norm": 0.364450067281723,
|
1015 |
+
"learning_rate": 5.813097513442035e-05,
|
1016 |
+
"loss": 0.1697,
|
1017 |
+
"num_input_tokens_seen": 13199584,
|
1018 |
+
"step": 630
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.45207795675002227,
|
1022 |
+
"grad_norm": 0.4172821342945099,
|
1023 |
+
"learning_rate": 5.757852362956463e-05,
|
1024 |
+
"loss": 0.1652,
|
1025 |
+
"num_input_tokens_seen": 13300400,
|
1026 |
+
"step": 635
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.45563762570080985,
|
1030 |
+
"grad_norm": 0.5252318382263184,
|
1031 |
+
"learning_rate": 5.702512351925464e-05,
|
1032 |
+
"loss": 0.1757,
|
1033 |
+
"num_input_tokens_seen": 13414232,
|
1034 |
+
"step": 640
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.4591972946515974,
|
1038 |
+
"grad_norm": 0.3265618681907654,
|
1039 |
+
"learning_rate": 5.6470844072702764e-05,
|
1040 |
+
"loss": 0.1671,
|
1041 |
+
"num_input_tokens_seen": 13508520,
|
1042 |
+
"step": 645
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 0.462756963602385,
|
1046 |
+
"grad_norm": 0.3361479938030243,
|
1047 |
+
"learning_rate": 5.591575466918816e-05,
|
1048 |
+
"loss": 0.1757,
|
1049 |
+
"num_input_tokens_seen": 13630000,
|
1050 |
+
"step": 650
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 0.46631663255317257,
|
1054 |
+
"grad_norm": 0.39177238941192627,
|
1055 |
+
"learning_rate": 5.5359924789372396e-05,
|
1056 |
+
"loss": 0.1772,
|
1057 |
+
"num_input_tokens_seen": 13746784,
|
1058 |
+
"step": 655
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.46987630150396015,
|
1062 |
+
"grad_norm": 0.3369304835796356,
|
1063 |
+
"learning_rate": 5.480342400660268e-05,
|
1064 |
+
"loss": 0.1642,
|
1065 |
+
"num_input_tokens_seen": 13847368,
|
1066 |
+
"step": 660
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.4734359704547477,
|
1070 |
+
"grad_norm": 0.3846571445465088,
|
1071 |
+
"learning_rate": 5.424632197820324e-05,
|
1072 |
+
"loss": 0.1684,
|
1073 |
+
"num_input_tokens_seen": 13947616,
|
1074 |
+
"step": 665
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.4769956394055353,
|
1078 |
+
"grad_norm": 0.4429912269115448,
|
1079 |
+
"learning_rate": 5.368868843675642e-05,
|
1080 |
+
"loss": 0.188,
|
1081 |
+
"num_input_tokens_seen": 14033504,
|
1082 |
+
"step": 670
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.4805553083563229,
|
1086 |
+
"grad_norm": 0.4972701370716095,
|
1087 |
+
"learning_rate": 5.31305931813741e-05,
|
1088 |
+
"loss": 0.164,
|
1089 |
+
"num_input_tokens_seen": 14128176,
|
1090 |
+
"step": 675
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.48411497730711045,
|
1094 |
+
"grad_norm": 0.38014113903045654,
|
1095 |
+
"learning_rate": 5.2572106068961026e-05,
|
1096 |
+
"loss": 0.1778,
|
1097 |
+
"num_input_tokens_seen": 14226296,
|
1098 |
+
"step": 680
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 0.487674646257898,
|
1102 |
+
"grad_norm": 0.4327758550643921,
|
1103 |
+
"learning_rate": 5.201329700547076e-05,
|
1104 |
+
"loss": 0.1822,
|
1105 |
+
"num_input_tokens_seen": 14341248,
|
1106 |
+
"step": 685
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.4912343152086856,
|
1110 |
+
"grad_norm": 0.3764859735965729,
|
1111 |
+
"learning_rate": 5.145423593715557e-05,
|
1112 |
+
"loss": 0.1544,
|
1113 |
+
"num_input_tokens_seen": 14454128,
|
1114 |
+
"step": 690
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.4947939841594732,
|
1118 |
+
"grad_norm": 0.4072837829589844,
|
1119 |
+
"learning_rate": 5.089499284181122e-05,
|
1120 |
+
"loss": 0.1521,
|
1121 |
+
"num_input_tokens_seen": 14558352,
|
1122 |
+
"step": 695
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.49835365311026075,
|
1126 |
+
"grad_norm": 0.45584630966186523,
|
1127 |
+
"learning_rate": 5.0335637720017817e-05,
|
1128 |
+
"loss": 0.1549,
|
1129 |
+
"num_input_tokens_seen": 14632632,
|
1130 |
+
"step": 700
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.5019133220610483,
|
1134 |
+
"grad_norm": 0.4504990577697754,
|
1135 |
+
"learning_rate": 4.977624058637783e-05,
|
1136 |
+
"loss": 0.1645,
|
1137 |
+
"num_input_tokens_seen": 14733712,
|
1138 |
+
"step": 705
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.5054729910118358,
|
1142 |
+
"grad_norm": 0.3279663026332855,
|
1143 |
+
"learning_rate": 4.921687146075244e-05,
|
1144 |
+
"loss": 0.1786,
|
1145 |
+
"num_input_tokens_seen": 14856480,
|
1146 |
+
"step": 710
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.5090326599626235,
|
1150 |
+
"grad_norm": 0.43772807717323303,
|
1151 |
+
"learning_rate": 4.865760035949695e-05,
|
1152 |
+
"loss": 0.1683,
|
1153 |
+
"num_input_tokens_seen": 14963032,
|
1154 |
+
"step": 715
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.512592328913411,
|
1158 |
+
"grad_norm": 0.41034719347953796,
|
1159 |
+
"learning_rate": 4.809849728669702e-05,
|
1160 |
+
"loss": 0.1737,
|
1161 |
+
"num_input_tokens_seen": 15056864,
|
1162 |
+
"step": 720
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 0.5161519978641986,
|
1166 |
+
"grad_norm": 0.35806897282600403,
|
1167 |
+
"learning_rate": 4.7539632225406095e-05,
|
1168 |
+
"loss": 0.1635,
|
1169 |
+
"num_input_tokens_seen": 15169176,
|
1170 |
+
"step": 725
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 0.5197116668149863,
|
1174 |
+
"grad_norm": 0.410163015127182,
|
1175 |
+
"learning_rate": 4.6981075128885693e-05,
|
1176 |
+
"loss": 0.1682,
|
1177 |
+
"num_input_tokens_seen": 15264616,
|
1178 |
+
"step": 730
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.5232713357657738,
|
1182 |
+
"grad_norm": 0.4012819826602936,
|
1183 |
+
"learning_rate": 4.642289591184934e-05,
|
1184 |
+
"loss": 0.1834,
|
1185 |
+
"num_input_tokens_seen": 15375512,
|
1186 |
+
"step": 735
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.5268310047165614,
|
1190 |
+
"grad_norm": 0.35860753059387207,
|
1191 |
+
"learning_rate": 4.586516444171122e-05,
|
1192 |
+
"loss": 0.1708,
|
1193 |
+
"num_input_tokens_seen": 15468760,
|
1194 |
+
"step": 740
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.5303906736673489,
|
1198 |
+
"grad_norm": 0.4758777916431427,
|
1199 |
+
"learning_rate": 4.530795052984104e-05,
|
1200 |
+
"loss": 0.1738,
|
1201 |
+
"num_input_tokens_seen": 15570704,
|
1202 |
+
"step": 745
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.5339503426181366,
|
1206 |
+
"grad_norm": 0.37693336606025696,
|
1207 |
+
"learning_rate": 4.475132392282556e-05,
|
1208 |
+
"loss": 0.1647,
|
1209 |
+
"num_input_tokens_seen": 15668584,
|
1210 |
+
"step": 750
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 0.5375100115689241,
|
1214 |
+
"grad_norm": 0.34583452343940735,
|
1215 |
+
"learning_rate": 4.4195354293738484e-05,
|
1216 |
+
"loss": 0.1557,
|
1217 |
+
"num_input_tokens_seen": 15746296,
|
1218 |
+
"step": 755
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 0.5410696805197117,
|
1222 |
+
"grad_norm": 0.36316967010498047,
|
1223 |
+
"learning_rate": 4.364011123341947e-05,
|
1224 |
+
"loss": 0.1651,
|
1225 |
+
"num_input_tokens_seen": 15868760,
|
1226 |
+
"step": 760
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.5446293494704992,
|
1230 |
+
"grad_norm": 0.46182507276535034,
|
1231 |
+
"learning_rate": 4.308566424176336e-05,
|
1232 |
+
"loss": 0.1691,
|
1233 |
+
"num_input_tokens_seen": 15961016,
|
1234 |
+
"step": 765
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.5481890184212869,
|
1238 |
+
"grad_norm": 0.4366365075111389,
|
1239 |
+
"learning_rate": 4.253208271902091e-05,
|
1240 |
+
"loss": 0.1762,
|
1241 |
+
"num_input_tokens_seen": 16068296,
|
1242 |
+
"step": 770
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.5517486873720744,
|
1246 |
+
"grad_norm": 0.3218953311443329,
|
1247 |
+
"learning_rate": 4.197943595711198e-05,
|
1248 |
+
"loss": 0.1603,
|
1249 |
+
"num_input_tokens_seen": 16189096,
|
1250 |
+
"step": 775
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.555308356322862,
|
1254 |
+
"grad_norm": 0.48252201080322266,
|
1255 |
+
"learning_rate": 4.142779313095223e-05,
|
1256 |
+
"loss": 0.1627,
|
1257 |
+
"num_input_tokens_seen": 16303344,
|
1258 |
+
"step": 780
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.5588680252736495,
|
1262 |
+
"grad_norm": 0.5327666401863098,
|
1263 |
+
"learning_rate": 4.087722328979438e-05,
|
1264 |
+
"loss": 0.1752,
|
1265 |
+
"num_input_tokens_seen": 16413888,
|
1266 |
+
"step": 785
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 0.5624276942244372,
|
1270 |
+
"grad_norm": 0.4146188795566559,
|
1271 |
+
"learning_rate": 4.032779534858544e-05,
|
1272 |
+
"loss": 0.156,
|
1273 |
+
"num_input_tokens_seen": 16520296,
|
1274 |
+
"step": 790
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.5659873631752247,
|
1278 |
+
"grad_norm": 0.4379608631134033,
|
1279 |
+
"learning_rate": 3.9779578079340554e-05,
|
1280 |
+
"loss": 0.176,
|
1281 |
+
"num_input_tokens_seen": 16622024,
|
1282 |
+
"step": 795
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"epoch": 0.5695470321260123,
|
1286 |
+
"grad_norm": 0.6401222944259644,
|
1287 |
+
"learning_rate": 3.9232640102534786e-05,
|
1288 |
+
"loss": 0.1524,
|
1289 |
+
"num_input_tokens_seen": 16734184,
|
1290 |
+
"step": 800
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.5731067010767998,
|
1294 |
+
"grad_norm": 0.48411625623703003,
|
1295 |
+
"learning_rate": 3.86870498785139e-05,
|
1296 |
+
"loss": 0.171,
|
1297 |
+
"num_input_tokens_seen": 16828056,
|
1298 |
+
"step": 805
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.5766663700275875,
|
1302 |
+
"grad_norm": 0.3455513119697571,
|
1303 |
+
"learning_rate": 3.814287569892512e-05,
|
1304 |
+
"loss": 0.1599,
|
1305 |
+
"num_input_tokens_seen": 16937648,
|
1306 |
+
"step": 810
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 0.580226038978375,
|
1310 |
+
"grad_norm": 0.35831761360168457,
|
1311 |
+
"learning_rate": 3.760018567816908e-05,
|
1312 |
+
"loss": 0.1694,
|
1313 |
+
"num_input_tokens_seen": 17043496,
|
1314 |
+
"step": 815
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.5837857079291626,
|
1318 |
+
"grad_norm": 0.4048117399215698,
|
1319 |
+
"learning_rate": 3.705904774487396e-05,
|
1320 |
+
"loss": 0.157,
|
1321 |
+
"num_input_tokens_seen": 17141592,
|
1322 |
+
"step": 820
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.5873453768799501,
|
1326 |
+
"grad_norm": 0.4098561704158783,
|
1327 |
+
"learning_rate": 3.651952963339282e-05,
|
1328 |
+
"loss": 0.1624,
|
1329 |
+
"num_input_tokens_seen": 17260592,
|
1330 |
+
"step": 825
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 0.5909050458307378,
|
1334 |
+
"grad_norm": 0.5280525088310242,
|
1335 |
+
"learning_rate": 3.598169887532521e-05,
|
1336 |
+
"loss": 0.1637,
|
1337 |
+
"num_input_tokens_seen": 17352008,
|
1338 |
+
"step": 830
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 0.5944647147815253,
|
1342 |
+
"grad_norm": 0.3961341083049774,
|
1343 |
+
"learning_rate": 3.5445622791064356e-05,
|
1344 |
+
"loss": 0.1622,
|
1345 |
+
"num_input_tokens_seen": 17484016,
|
1346 |
+
"step": 835
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.5980243837323129,
|
1350 |
+
"grad_norm": 0.3392258584499359,
|
1351 |
+
"learning_rate": 3.491136848137053e-05,
|
1352 |
+
"loss": 0.1614,
|
1353 |
+
"num_input_tokens_seen": 17569392,
|
1354 |
+
"step": 840
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.6015840526831004,
|
1358 |
+
"grad_norm": 0.41437968611717224,
|
1359 |
+
"learning_rate": 3.4379002818972124e-05,
|
1360 |
+
"loss": 0.1607,
|
1361 |
+
"num_input_tokens_seen": 17660056,
|
1362 |
+
"step": 845
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 0.6051437216338881,
|
1366 |
+
"grad_norm": 0.3347319960594177,
|
1367 |
+
"learning_rate": 3.384859244019511e-05,
|
1368 |
+
"loss": 0.1549,
|
1369 |
+
"num_input_tokens_seen": 17753416,
|
1370 |
+
"step": 850
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.6087033905846756,
|
1374 |
+
"grad_norm": 0.41625234484672546,
|
1375 |
+
"learning_rate": 3.3320203736622184e-05,
|
1376 |
+
"loss": 0.1621,
|
1377 |
+
"num_input_tokens_seen": 17850256,
|
1378 |
+
"step": 855
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 0.6122630595354632,
|
1382 |
+
"grad_norm": 0.3651588261127472,
|
1383 |
+
"learning_rate": 3.2793902846782534e-05,
|
1384 |
+
"loss": 0.1651,
|
1385 |
+
"num_input_tokens_seen": 17947344,
|
1386 |
+
"step": 860
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 0.6158227284862507,
|
1390 |
+
"grad_norm": 0.4354760944843292,
|
1391 |
+
"learning_rate": 3.226975564787322e-05,
|
1392 |
+
"loss": 0.1718,
|
1393 |
+
"num_input_tokens_seen": 18052208,
|
1394 |
+
"step": 865
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.6193823974370384,
|
1398 |
+
"grad_norm": 0.41476985812187195,
|
1399 |
+
"learning_rate": 3.174782774751338e-05,
|
1400 |
+
"loss": 0.1567,
|
1401 |
+
"num_input_tokens_seen": 18180416,
|
1402 |
+
"step": 870
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.6229420663878259,
|
1406 |
+
"grad_norm": 0.42029616236686707,
|
1407 |
+
"learning_rate": 3.122818447553201e-05,
|
1408 |
+
"loss": 0.1649,
|
1409 |
+
"num_input_tokens_seen": 18285576,
|
1410 |
+
"step": 875
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.6265017353386135,
|
1414 |
+
"grad_norm": 0.3612583577632904,
|
1415 |
+
"learning_rate": 3.071089087579074e-05,
|
1416 |
+
"loss": 0.1486,
|
1417 |
+
"num_input_tokens_seen": 18382008,
|
1418 |
+
"step": 880
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.630061404289401,
|
1422 |
+
"grad_norm": 0.3782946467399597,
|
1423 |
+
"learning_rate": 3.019601169804216e-05,
|
1424 |
+
"loss": 0.1498,
|
1425 |
+
"num_input_tokens_seen": 18463520,
|
1426 |
+
"step": 885
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.6336210732401887,
|
1430 |
+
"grad_norm": 0.5428029894828796,
|
1431 |
+
"learning_rate": 2.9683611389825167e-05,
|
1432 |
+
"loss": 0.1605,
|
1433 |
+
"num_input_tokens_seen": 18573728,
|
1434 |
+
"step": 890
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.6371807421909762,
|
1438 |
+
"grad_norm": 0.3950955271720886,
|
1439 |
+
"learning_rate": 2.917375408839803e-05,
|
1440 |
+
"loss": 0.1647,
|
1441 |
+
"num_input_tokens_seen": 18670936,
|
1442 |
+
"step": 895
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.6407404111417638,
|
1446 |
+
"grad_norm": 0.515082597732544,
|
1447 |
+
"learning_rate": 2.8666503612710226e-05,
|
1448 |
+
"loss": 0.1499,
|
1449 |
+
"num_input_tokens_seen": 18762568,
|
1450 |
+
"step": 900
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"epoch": 0.6443000800925514,
|
1454 |
+
"grad_norm": 0.40842828154563904,
|
1455 |
+
"learning_rate": 2.8161923455414367e-05,
|
1456 |
+
"loss": 0.1505,
|
1457 |
+
"num_input_tokens_seen": 18865968,
|
1458 |
+
"step": 905
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.647859749043339,
|
1462 |
+
"grad_norm": 0.3697022795677185,
|
1463 |
+
"learning_rate": 2.7660076774918708e-05,
|
1464 |
+
"loss": 0.1681,
|
1465 |
+
"num_input_tokens_seen": 18981472,
|
1466 |
+
"step": 910
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.6514194179941265,
|
1470 |
+
"grad_norm": 0.5153518319129944,
|
1471 |
+
"learning_rate": 2.7161026387481636e-05,
|
1472 |
+
"loss": 0.1698,
|
1473 |
+
"num_input_tokens_seen": 19079608,
|
1474 |
+
"step": 915
|
1475 |
+
},
|
1476 |
+
{
|
1477 |
+
"epoch": 0.6549790869449141,
|
1478 |
+
"grad_norm": 0.6159951686859131,
|
1479 |
+
"learning_rate": 2.666483475934885e-05,
|
1480 |
+
"loss": 0.1589,
|
1481 |
+
"num_input_tokens_seen": 19168792,
|
1482 |
+
"step": 920
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.6585387558957017,
|
1486 |
+
"grad_norm": 0.4294576644897461,
|
1487 |
+
"learning_rate": 2.6171563998934605e-05,
|
1488 |
+
"loss": 0.1779,
|
1489 |
+
"num_input_tokens_seen": 19292088,
|
1490 |
+
"step": 925
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.6620984248464893,
|
1494 |
+
"grad_norm": 0.4489574730396271,
|
1495 |
+
"learning_rate": 2.5681275849047482e-05,
|
1496 |
+
"loss": 0.1797,
|
1497 |
+
"num_input_tokens_seen": 19393184,
|
1498 |
+
"step": 930
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 0.6656580937972768,
|
1502 |
+
"grad_norm": 0.38424602150917053,
|
1503 |
+
"learning_rate": 2.5194031679162067e-05,
|
1504 |
+
"loss": 0.1585,
|
1505 |
+
"num_input_tokens_seen": 19486688,
|
1506 |
+
"step": 935
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 0.6692177627480644,
|
1510 |
+
"grad_norm": 0.3428622782230377,
|
1511 |
+
"learning_rate": 2.4709892477737262e-05,
|
1512 |
+
"loss": 0.1527,
|
1513 |
+
"num_input_tokens_seen": 19583928,
|
1514 |
+
"step": 940
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.672777431698852,
|
1518 |
+
"grad_norm": 0.3572031855583191,
|
1519 |
+
"learning_rate": 2.422891884458241e-05,
|
1520 |
+
"loss": 0.163,
|
1521 |
+
"num_input_tokens_seen": 19682760,
|
1522 |
+
"step": 945
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.6763371006496396,
|
1526 |
+
"grad_norm": 0.4243921637535095,
|
1527 |
+
"learning_rate": 2.3751170983272e-05,
|
1528 |
+
"loss": 0.1659,
|
1529 |
+
"num_input_tokens_seen": 19784712,
|
1530 |
+
"step": 950
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 0.6798967696004271,
|
1534 |
+
"grad_norm": 0.4836697578430176,
|
1535 |
+
"learning_rate": 2.3276708693609943e-05,
|
1536 |
+
"loss": 0.1662,
|
1537 |
+
"num_input_tokens_seen": 19890408,
|
1538 |
+
"step": 955
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.6834564385512147,
|
1542 |
+
"grad_norm": 0.3940310478210449,
|
1543 |
+
"learning_rate": 2.2805591364144447e-05,
|
1544 |
+
"loss": 0.1689,
|
1545 |
+
"num_input_tokens_seen": 19988040,
|
1546 |
+
"step": 960
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 0.6870161075020023,
|
1550 |
+
"grad_norm": 0.41803377866744995,
|
1551 |
+
"learning_rate": 2.233787796473432e-05,
|
1552 |
+
"loss": 0.1497,
|
1553 |
+
"num_input_tokens_seen": 20074552,
|
1554 |
+
"step": 965
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.6905757764527899,
|
1558 |
+
"grad_norm": 0.37162527441978455,
|
1559 |
+
"learning_rate": 2.187362703916766e-05,
|
1560 |
+
"loss": 0.1631,
|
1561 |
+
"num_input_tokens_seen": 20181064,
|
1562 |
+
"step": 970
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.6941354454035775,
|
1566 |
+
"grad_norm": 0.37610870599746704,
|
1567 |
+
"learning_rate": 2.141289669783401e-05,
|
1568 |
+
"loss": 0.1752,
|
1569 |
+
"num_input_tokens_seen": 20293072,
|
1570 |
+
"step": 975
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.697695114354365,
|
1574 |
+
"grad_norm": 0.39441388845443726,
|
1575 |
+
"learning_rate": 2.0955744610450618e-05,
|
1576 |
+
"loss": 0.1575,
|
1577 |
+
"num_input_tokens_seen": 20394384,
|
1578 |
+
"step": 980
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.7012547833051527,
|
1582 |
+
"grad_norm": 0.33397364616394043,
|
1583 |
+
"learning_rate": 2.050222799884387e-05,
|
1584 |
+
"loss": 0.1389,
|
1585 |
+
"num_input_tokens_seen": 20497680,
|
1586 |
+
"step": 985
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.7048144522559402,
|
1590 |
+
"grad_norm": 0.39059650897979736,
|
1591 |
+
"learning_rate": 2.0052403629786858e-05,
|
1592 |
+
"loss": 0.1625,
|
1593 |
+
"num_input_tokens_seen": 20597280,
|
1594 |
+
"step": 990
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 0.7083741212067278,
|
1598 |
+
"grad_norm": 0.4324747323989868,
|
1599 |
+
"learning_rate": 1.9606327807893902e-05,
|
1600 |
+
"loss": 0.1546,
|
1601 |
+
"num_input_tokens_seen": 20715592,
|
1602 |
+
"step": 995
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.7119337901575153,
|
1606 |
+
"grad_norm": 0.4057559072971344,
|
1607 |
+
"learning_rate": 1.9164056368572846e-05,
|
1608 |
+
"loss": 0.1759,
|
1609 |
+
"num_input_tokens_seen": 20830456,
|
1610 |
+
"step": 1000
|
1611 |
+
}
|
1612 |
+
],
|
1613 |
+
"logging_steps": 5,
|
1614 |
+
"max_steps": 1404,
|
1615 |
+
"num_input_tokens_seen": 20830456,
|
1616 |
+
"num_train_epochs": 1,
|
1617 |
+
"save_steps": 100,
|
1618 |
+
"stateful_callbacks": {
|
1619 |
+
"TrainerControl": {
|
1620 |
+
"args": {
|
1621 |
+
"should_epoch_stop": false,
|
1622 |
+
"should_evaluate": false,
|
1623 |
+
"should_log": false,
|
1624 |
+
"should_save": true,
|
1625 |
+
"should_training_stop": false
|
1626 |
+
},
|
1627 |
+
"attributes": {}
|
1628 |
+
}
|
1629 |
+
},
|
1630 |
+
"total_flos": 9.472838083134095e+17,
|
1631 |
+
"train_batch_size": 1,
|
1632 |
+
"trial_name": null,
|
1633 |
+
"trial_params": null
|
1634 |
+
}
|
2/checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53d6f2b6ddc39413c7f5106d4dfc20a60221e892597125a4051acc98e75cf41e
|
3 |
+
size 7352
|
2/checkpoint-1000/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2/checkpoint-1000/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
2/checkpoint-1100/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /root/autodl-tmp/Qwen3-8B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.1
|
2/checkpoint-1100/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/root/autodl-tmp/Qwen3-8B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 8,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 4,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"q_proj",
|
28 |
+
"k_proj",
|
29 |
+
"v_proj",
|
30 |
+
"up_proj",
|
31 |
+
"down_proj",
|
32 |
+
"gate_proj",
|
33 |
+
"o_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": true
|
39 |
+
}
|
2/checkpoint-1100/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc980566540beab038e36e4b044f63f9bb8b9ea3480ead65503fde29989ae98a
|
3 |
+
size 21889736
|
2/checkpoint-1100/added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
2/checkpoint-1100/global_step1100/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:031470bac929ee8b41ace3e23b641c253aba531aeaaf043b805f5dd87fd6b04c
|
3 |
+
size 133228077
|
2/checkpoint-1100/global_step1100/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4587341834363525c009e1d93ddc604d47814005495ace04a593afa44560f06b
|
3 |
+
size 65501576
|