--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: text-generation-webui/loras/mistral-instruct-raw-format-v2-more-positive results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ./data/raw_format/tool_used_training.jsonl type: sharegpt - path: ./data/raw_format/tool_not_used_training.jsonl type: sharegpt - path: ./data/raw_format/no_tools_training.jsonl type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ../../text-generation-webui/loras/mistral-instruct-raw-format-v2-more-positive adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: # lora_target_modules: # - gate_proj # - down_proj # - up_proj # - q_proj # - v_proj # - k_proj # - o_proj wandb_project: function-call wandb_name: mixtral-instruct-qlora-v1 wandb_log_model: end gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.001 adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true # loss_watchdog_threshold: 5.0 # loss_watchdog_patience: 3 warmup_steps: 10 # evals_per_epoch: 20 eval_steps: 0.1 save_steps: 0.1 eval_table_size: eval_max_new_tokens: 256 # saves_per_epoch: 1 debug: deepspeed: weight_decay: 1.0 fsdp: fsdp_config: ```

# text-generation-webui/loras/mistral-instruct-raw-format-v2-more-positive This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9379 | 0.03 | 1 | 0.9217 | | 0.7334 | 0.1 | 3 | 0.6238 | | 0.503 | 0.21 | 6 | 0.5134 | | 0.4644 | 0.31 | 9 | 0.4586 | | 0.4636 | 0.41 | 12 | 0.4403 | | 0.41 | 0.51 | 15 | 0.4276 | | 0.4248 | 0.62 | 18 | 0.4189 | | 0.4094 | 0.72 | 21 | 0.4120 | | 0.3905 | 0.82 | 24 | 0.4094 | | 0.3828 | 0.92 | 27 | 0.4076 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.0