--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.7220674282529953 --- # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.7881 - Accuracy: 0.7221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2307 | 1.0 | 224 | 1.0863 | 0.5874 | | 1.0893 | 2.0 | 448 | 0.9700 | 0.6362 | | 1.0244 | 3.0 | 672 | 0.8859 | 0.6757 | | 1.016 | 4.0 | 896 | 0.8804 | 0.6787 | | 0.9089 | 5.0 | 1120 | 0.8611 | 0.6897 | | 0.8935 | 6.0 | 1344 | 0.8283 | 0.7028 | | 0.8403 | 7.0 | 1568 | 0.8116 | 0.7102 | | 0.8179 | 8.0 | 1792 | 0.7934 | 0.7166 | | 0.7764 | 9.0 | 2016 | 0.7865 | 0.7208 | | 0.771 | 10.0 | 2240 | 0.7881 | 0.7221 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1