| 
							 | 
						import os,sys,torch,warnings,pdb | 
					
					
						
						| 
							 | 
						warnings.filterwarnings("ignore") | 
					
					
						
						| 
							 | 
						import librosa | 
					
					
						
						| 
							 | 
						import importlib | 
					
					
						
						| 
							 | 
						import  numpy as np | 
					
					
						
						| 
							 | 
						import hashlib , math | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						from uvr5_pack.lib_v5 import spec_utils | 
					
					
						
						| 
							 | 
						from uvr5_pack.utils import _get_name_params,inference | 
					
					
						
						| 
							 | 
						from uvr5_pack.lib_v5.model_param_init import ModelParameters | 
					
					
						
						| 
							 | 
						from scipy.io import wavfile | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class  _audio_pre_(): | 
					
					
						
						| 
							 | 
						    def __init__(self, model_path,device,is_half): | 
					
					
						
						| 
							 | 
						        self.model_path = model_path | 
					
					
						
						| 
							 | 
						        self.device = device | 
					
					
						
						| 
							 | 
						        self.data = { | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            'postprocess': False, | 
					
					
						
						| 
							 | 
						            'tta': False, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            'window_size': 512, | 
					
					
						
						| 
							 | 
						            'agg': 10, | 
					
					
						
						| 
							 | 
						            'high_end_process': 'mirroring', | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        nn_arch_sizes = [ | 
					
					
						
						| 
							 | 
						            31191,  | 
					
					
						
						| 
							 | 
						            33966,61968, 123821, 123812, 537238  | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						        self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes) | 
					
					
						
						| 
							 | 
						        model_size = math.ceil(os.stat(model_path ).st_size / 1024) | 
					
					
						
						| 
							 | 
						        nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size))) | 
					
					
						
						| 
							 | 
						        nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None) | 
					
					
						
						| 
							 | 
						        model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest() | 
					
					
						
						| 
							 | 
						        param_name ,model_params_d = _get_name_params(model_path , model_hash) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        mp = ModelParameters(model_params_d) | 
					
					
						
						| 
							 | 
						        model = nets.CascadedASPPNet(mp.param['bins'] * 2) | 
					
					
						
						| 
							 | 
						        cpk = torch.load( model_path , map_location='cpu')   | 
					
					
						
						| 
							 | 
						        model.load_state_dict(cpk) | 
					
					
						
						| 
							 | 
						        model.eval() | 
					
					
						
						| 
							 | 
						        if(is_half==True):model = model.half().to(device) | 
					
					
						
						| 
							 | 
						        else:model = model.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.mp = mp | 
					
					
						
						| 
							 | 
						        self.model = model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _path_audio_(self, music_file ,ins_root=None,vocal_root=None): | 
					
					
						
						| 
							 | 
						        if(ins_root is None and vocal_root is None):return "No save root." | 
					
					
						
						| 
							 | 
						        name=os.path.basename(music_file) | 
					
					
						
						| 
							 | 
						        if(ins_root is not None):os.makedirs(ins_root, exist_ok=True) | 
					
					
						
						| 
							 | 
						        if(vocal_root is not None):os.makedirs(vocal_root , exist_ok=True) | 
					
					
						
						| 
							 | 
						        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} | 
					
					
						
						| 
							 | 
						        bands_n = len(self.mp.param['band']) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for d in range(bands_n, 0, -1):  | 
					
					
						
						| 
							 | 
						            bp = self.mp.param['band'][d] | 
					
					
						
						| 
							 | 
						            if d == bands_n:  | 
					
					
						
						| 
							 | 
						                X_wave[d], _ = librosa.core.load( | 
					
					
						
						| 
							 | 
						                    music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) | 
					
					
						
						| 
							 | 
						                if X_wave[d].ndim == 1: | 
					
					
						
						| 
							 | 
						                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) | 
					
					
						
						| 
							 | 
						            else:  | 
					
					
						
						| 
							 | 
						                X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse']) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if d == bands_n and self.data['high_end_process'] != 'none': | 
					
					
						
						| 
							 | 
						                input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + ( self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start']) | 
					
					
						
						| 
							 | 
						                input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) | 
					
					
						
						| 
							 | 
						        aggresive_set = float(self.data['agg']/100) | 
					
					
						
						| 
							 | 
						        aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']} | 
					
					
						
						| 
							 | 
						        with torch.no_grad(): | 
					
					
						
						| 
							 | 
						            pred, X_mag, X_phase = inference(X_spec_m,self.device,self.model, aggressiveness,self.data) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.data['postprocess']: | 
					
					
						
						| 
							 | 
						            pred_inv = np.clip(X_mag - pred, 0, np.inf) | 
					
					
						
						| 
							 | 
						            pred = spec_utils.mask_silence(pred, pred_inv) | 
					
					
						
						| 
							 | 
						        y_spec_m = pred * X_phase | 
					
					
						
						| 
							 | 
						        v_spec_m = X_spec_m - y_spec_m | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (ins_root is not None): | 
					
					
						
						| 
							 | 
						            if self.data['high_end_process'].startswith('mirroring'): | 
					
					
						
						| 
							 | 
						                input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp) | 
					
					
						
						| 
							 | 
						                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp,input_high_end_h, input_high_end_) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) | 
					
					
						
						| 
							 | 
						            print ('%s instruments done'%name) | 
					
					
						
						| 
							 | 
						            wavfile.write(os.path.join(ins_root, 'instrument_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype("int16"))   | 
					
					
						
						| 
							 | 
						        if (vocal_root is not None): | 
					
					
						
						| 
							 | 
						            if self.data['high_end_process'].startswith('mirroring'): | 
					
					
						
						| 
							 | 
						                input_high_end_ = spec_utils.mirroring(self.data['high_end_process'],  v_spec_m, input_high_end, self.mp) | 
					
					
						
						| 
							 | 
						                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) | 
					
					
						
						| 
							 | 
						            print ('%s vocals done'%name) | 
					
					
						
						| 
							 | 
						            wavfile.write(os.path.join(vocal_root , 'vocal_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype("int16")) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == '__main__': | 
					
					
						
						| 
							 | 
						    device = 'cuda' | 
					
					
						
						| 
							 | 
						    is_half=True | 
					
					
						
						| 
							 | 
						    model_path='uvr5_weights/2_HP-UVR.pth' | 
					
					
						
						| 
							 | 
						    pre_fun = _audio_pre_(model_path=model_path,device=device,is_half=True) | 
					
					
						
						| 
							 | 
						    audio_path = '神女劈观.aac' | 
					
					
						
						| 
							 | 
						    save_path = 'opt' | 
					
					
						
						| 
							 | 
						    pre_fun._path_audio_(audio_path , save_path,save_path) | 
					
					
						
						| 
							 | 
						
 |