File size: 6,766 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import torch
from nuplan.common.actor_state.tracked_objects_types import (
    TrackedObjectType,
)

OBJECT_TYPE_DICT = {
    "vehicle": TrackedObjectType.VEHICLE,
    "pedestrian": TrackedObjectType.PEDESTRIAN,
    "bicycle": TrackedObjectType.BICYCLE,
    "traffic_cone": TrackedObjectType.TRAFFIC_CONE,
    "barrier": TrackedObjectType.BARRIER,
    "czone_sign": TrackedObjectType.CZONE_SIGN,
    "generic_object": TrackedObjectType.GENERIC_OBJECT,
}


def limit_period(val, offset=0.5, period=2 * np.pi):
    """Limit the value into a period for periodic function.



    Args:

        val (torch.Tensor | np.ndarray): The value to be converted.

        offset (float, optional): Offset to set the value range.

            Defaults to 0.5.

        period ([type], optional): Period of the value. Defaults to np.pi.



    Returns:

        (torch.Tensor | np.ndarray): Value in the range of

            [-offset * period, (1-offset) * period]

    """
    limited_val = val - torch.floor(val / period + offset) * period
    return limited_val


class LiDARAug(object):
    def __init__(self,

                 bda_aug_conf, is_train,

                 x_range='(-50.0, 50.0)',

                 y_range='(-50.0, 50.0)',

                 z_range='(-5, 20)',

                 ):
        for k in ['rot_lim', 'scale_lim', 'tran_lim']:
            bda_aug_conf[k] = eval(bda_aug_conf[k])
        self.bda_aug_conf = bda_aug_conf
        self.is_train = False
        self.x_range = eval(x_range)
        self.y_range = eval(y_range)
        self.z_range = eval(z_range)

    def sample_bda_augmentation(self):
        """Generate bda augmentation values based on bda_config."""
        if self.is_train:
            rotate_bda = np.random.uniform(*self.bda_aug_conf['rot_lim'])
            scale_bda = np.random.uniform(*self.bda_aug_conf['scale_lim'])
            flip_dx = np.random.uniform() < self.bda_aug_conf['flip_dx_ratio']
            flip_dy = np.random.uniform() < self.bda_aug_conf['flip_dy_ratio']
            translation_std = self.bda_aug_conf.get('tran_lim', [0.0, 0.0, 0.0])
            tran_bda = np.random.normal(scale=translation_std, size=3).T
        else:
            rotate_bda = 0
            scale_bda = 1.0
            flip_dx = False
            flip_dy = False
            tran_bda = np.zeros((1, 3), dtype=np.float32)
        return rotate_bda, scale_bda, flip_dx, flip_dy, tran_bda

    def bev_transform(self, gt_boxes, rotate_angle, scale_ratio, flip_dx,

                      flip_dy, tran_bda, rot_mat):
        if gt_boxes.shape[0] > 0:
            gt_boxes[:, :3] = (
                rot_mat @ gt_boxes[:, :3].unsqueeze(-1)).squeeze(-1)
            gt_boxes[:, 3:6] *= scale_ratio
            gt_boxes[:, 6] += rotate_angle
            if flip_dx:
                gt_boxes[:,
                         6] = 2 * torch.asin(torch.tensor(1.0)) - gt_boxes[:,
                                                                           6]
            if flip_dy:
                gt_boxes[:, 6] = -gt_boxes[:, 6]
            gt_boxes[:, 7:] = (
                rot_mat[:2, :2] @ gt_boxes[:, 7:].unsqueeze(-1)).squeeze(-1)
            gt_boxes[:, :3] = gt_boxes[:, :3] + tran_bda
        return gt_boxes

    def __call__(self, features, targets):
        # 1. filter box based on ranges
        # 2. filter label based on classes
        if 'dets' in targets and 'labels' in targets:
            boxes = targets['dets']
            labels = targets['labels']

            for t, (box, label) in enumerate(zip(boxes, labels)):
                label_mask = np.array([n in OBJECT_TYPE_DICT for n in label], dtype=np.bool_)
                label_mask = torch.from_numpy(label_mask)
                range_mask = ((box[:, 0] > self.x_range[0]) &
                              (box[:, 0] < self.x_range[1]) &
                              (box[:, 1] > self.y_range[0]) &
                              (box[:, 1] < self.y_range[1]))
                mask = range_mask & label_mask
                box_of_interest = box[mask]
                box_of_interest[:, 6] = limit_period(box_of_interest[:, 6])
                boxes[t] = box_of_interest.float()

                labels[t] = torch.from_numpy(np.array([OBJECT_TYPE_DICT[x].value for
                                                       x in label], dtype=np.int64))[mask]
            targets['dets'] = boxes
            targets['labels'] = labels

        rotate_bda, scale_bda, flip_dx, flip_dy, tran_bda = \
            self.sample_bda_augmentation()
        bda_mat = torch.zeros(4, 4)
        bda_mat[3, 3] = 1
        rotate_angle = torch.tensor(rotate_bda / 180 * np.pi)
        rot_sin = torch.sin(rotate_angle)
        rot_cos = torch.cos(rotate_angle)
        rot_mat = torch.Tensor([[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0],
                                [0, 0, 1]])
        scale_mat = torch.Tensor([[scale_bda, 0, 0], [0, scale_bda, 0],
                                  [0, 0, scale_bda]])
        flip_mat = torch.Tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        if flip_dx:
            flip_mat = flip_mat @ torch.Tensor([[-1, 0, 0], [0, 1, 0],
                                                [0, 0, 1]])
        if flip_dy:
            flip_mat = flip_mat @ torch.Tensor([[1, 0, 0], [0, -1, 0],
                                                [0, 0, 1]])
        bda_rot = flip_mat @ (scale_mat @ rot_mat)

        if 'dets' in targets:
            for idx, boxes in enumerate(targets['dets']):
                targets['dets'][idx] = self.bev_transform(boxes, rotate_bda, scale_bda,
                                                       flip_dx, flip_dy, tran_bda, bda_rot)
        # print('before bda')
        # print(features['lidars_warped'][-1][:, 0].max())
        # print(features['lidars_warped'][-1][:, 0].min())
        # print(features['lidars_warped'][-1][:, 1].max())
        # print(features['lidars_warped'][-1][:, 1].min())
        for idx, points in enumerate(features['lidars_warped']):
            points_aug = (bda_rot @ points[:, :3].unsqueeze(-1)).squeeze(-1)
            points[:, :3] = points_aug + tran_bda
            features['lidars_warped'][idx] = points

        # print('after bda')
        # print(features['lidars_warped'][-1][:, 0].max())
        # print(features['lidars_warped'][-1][:, 0].min())
        # print(features['lidars_warped'][-1][:, 1].max())
        # print(features['lidars_warped'][-1][:, 1].min())
        bda_mat[:3, :3] = bda_rot
        bda_mat[:3, 3] = torch.from_numpy(tran_bda)
        features['bda'] = bda_mat
        return features, targets