yuchenlin commited on
Commit
345b1ee
1 Parent(s): 7333fb2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -52
README.md CHANGED
@@ -28,6 +28,7 @@ Inspired by [DeBERTa Reward Model Series](https://huggingface.co/OpenAssistant/r
28
  - Paper: [https://arxiv.org/abs/2306.02561](https://arxiv.org/abs/2306.02561)
29
  - Space Demo: [https://huggingface.co/spaces/llm-blender/LLM-Blender](https://huggingface.co/spaces/llm-blender/LLM-Blender)
30
 
 
31
  ## Statistics
32
 
33
  ### Context length
@@ -36,58 +37,6 @@ Inspired by [DeBERTa Reward Model Series](https://huggingface.co/OpenAssistant/r
36
  | [pair-ranker](https://huggingface.co/llm-blender/pair-ranker) | 128 | 128 | 384 |
37
  | [PairRM](https://huggingface.co/llm-blender/pair-reward-model/) (This model) | 1224 | 412 | 2048 |
38
 
39
- ### Performance
40
- PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences
41
- with an extremly small model size (0.4B), approching the performance of GPT-4.
42
-
43
- We test the pairwise comparison on
44
- - [Auto-J pairwise testdata](https://github.com/GAIR-NLP/auto-j#pairwise-response-comparison)
45
- - [HHH-alignment](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment)
46
- - [MT-bench-human-judgements](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments)
47
-
48
- #### Auto-J Pairwise test data performance
49
-
50
- | Model | Summ | Exam | Code | Rewriting | Crea W | Func W | Comm | NLP | Overall |
51
- |:---------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-----:|:--------:|:---------:|
52
- | Closed -source Models |
53
- | ChatGPT | 33.3 | 40.3 | 36.6 | 31.6 | 48.2 | 40.4 | 47.6 | 45.8 | 42.7 |
54
- | Claude -2 | 30.6 | 36.1 | 41.7 | 34.2 | 48.1 | 42.5 | 40.6 | 48.5 | 42.4 |
55
- | GPT -4 | 59.7 | 51.4 | 69.2 | 58.3 | 66.7 | 60.4 | 58.3 | 65.2 | 61.9 |
56
- | Open -source Models |
57
- | SteamSHP | 33.3 | 29.2 | 26.7 | 33.3 | 40.7 | 31.3 | 51.4 | 51.9 | 40.6 |
58
- | PandaLM | 29.2 | 33.3 | 31.7 | 23.3 | 43.5 | 32.9 | 44.8 | 48.9 | 38.9 |
59
- | LLaMA -2-Chat -13B | 20.8 | 27.8 | 19.2 | 20 | 31.5 | 27.5 | 35.8 | 31.8 | 29 |
60
- | Vicuna -13B-v1.5 | 30.6 | 23.6 | 35 | 28.3 | 36.1 | 37.5 | 45.5 | 39.8 | 37.3 |
61
- | WizardLM -13B-v1.2 | 22.2 | 20.8 | 32.5 | 19.2 | 28.7 | 25.4 | 29.2 | 33 | 27.8 |
62
- | LLAMA -2-chat -70B | 34.7 | 33.3 | 36.7 | 35.8 | 51.4 | 54.2 | 47.2 | 47.7 | 45.9 |
63
- | AUTO -J (13b) | 45.8 | 38.9 | 59.2 | 47.5 | 54.6 | 57.1 | **58** | 57.6 | 54.8 |
64
- | **PairRM (0.4b)** | **56.94** | **52.78** | **58.33** | **55.83** | **61.57** | **59.17** | 57.64 | **62.5** | **59.05** |
65
-
66
- #### HHH-Alignment and MT-bench human judgements
67
-
68
- | Evaluator LM | HHH ALIGNMENT | | | | | MT BENCH HUMAN JUDG . |
69
- |:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|:---------------------:|
70
- | | Help . | Harm . | Hon . | Other | Total Avg . | Human Preference |
71
- | RANDOM | 50 | 50 | 50 | 50 | 50 | 34.26 |
72
- | STANFORDNLP REWARD MODEL | 69.49 | 60.34 | 52.46 | 51.16 | 58.82 | 44.79 |
73
- | ALMOST REWARD MODEL | 74.58 | 67.24 | 78.69 | 86.05 | 76.02 | 49.9 |
74
- | LLAMA2 -CHAT 7B | 66.1 | 81.03 | 70.49 | 74.42 | 72.85 | 51.78 |
75
- | LLAMA2 -CHAT 13B | 74.58 | 87.93 | 55.74 | 79.07 | 73.76 | 52.34 |
76
- | LLAMA2 -CHAT 70B | 66.1 | **89.66** | 67.21 | 74.42 | 74.21 | 53.67 |
77
- | LLAMA2 -CHAT 13B+COARSE . | 68.74 | 68.97 | 65.57 | 67.44 | 67.42 | 46.89 |
78
- | GPT -3.5-TURBO -0613 | 76.27 | 87.93 | 67.21 | 86.05 | 78.73 | 57.12 |
79
- | PROMETHEUS 7B | 69.49 | 84.48 | 78.69 | 90.7 | 80.09 | 55.14 |
80
- | PROMETHEUS 13B | 81.36 | 82.76 | 75.41 | 76.74 | 79.19 | 57.72 |
81
- | **PairRM (0.4b)** | **84.75** | 84.48 | **80.33** | **90.7** | **84.62** | **59** |
82
- | GPT -4-0613 | 91.53 | 93.1 | 85.25 | 83.72 | 88.69 | 63.87 |
83
-
84
- **While PairRM is a extremely small model (0.4B) based on deberta, the pairwise comparison aggrement performance approches GPT-4's performance!**
85
-
86
- Two reasons to attribute:
87
- - Our PairRM specically designed model arch for pairwise comparison through bidirectional attention (See LLM-blender paper for more details)
88
- - The high-quality and large-scale human preference annotation data it was train on (see training dataset list on this hugging face page)
89
-
90
-
91
  ## Usage Example
92
 
93
  ### Installation
@@ -192,6 +141,60 @@ With a `blender.compare()` function, you can easily apply PairRM to poopular RLH
192
 
193
  Learn more in our LLM-Blender Github [README.md](https://github.com/yuchenlin/LLM-Blender#rank-and-fusion)
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
  ## Citation
196
  If you are using PairRM in your research, please cite LLM-blender.
197
  ```bibtex
 
28
  - Paper: [https://arxiv.org/abs/2306.02561](https://arxiv.org/abs/2306.02561)
29
  - Space Demo: [https://huggingface.co/spaces/llm-blender/LLM-Blender](https://huggingface.co/spaces/llm-blender/LLM-Blender)
30
 
31
+
32
  ## Statistics
33
 
34
  ### Context length
 
37
  | [pair-ranker](https://huggingface.co/llm-blender/pair-ranker) | 128 | 128 | 384 |
38
  | [PairRM](https://huggingface.co/llm-blender/pair-reward-model/) (This model) | 1224 | 412 | 2048 |
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ## Usage Example
41
 
42
  ### Installation
 
141
 
142
  Learn more in our LLM-Blender Github [README.md](https://github.com/yuchenlin/LLM-Blender#rank-and-fusion)
143
 
144
+ ### Performance
145
+ PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences
146
+ with an extremly small model size (0.4B), approching the performance of GPT-4.
147
+
148
+ We test the pairwise comparison on
149
+ - [Auto-J pairwise testdata](https://github.com/GAIR-NLP/auto-j#pairwise-response-comparison)
150
+ - [HHH-alignment](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment)
151
+ - [MT-bench-human-judgements](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments)
152
+
153
+ #### Auto-J Pairwise test data performance
154
+
155
+ | Model | Summ | Exam | Code | Rewriting | Crea W | Func W | Comm | NLP | Overall |
156
+ |:---------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-----:|:--------:|:---------:|
157
+ | Closed -source Models |
158
+ | ChatGPT | 33.3 | 40.3 | 36.6 | 31.6 | 48.2 | 40.4 | 47.6 | 45.8 | 42.7 |
159
+ | Claude -2 | 30.6 | 36.1 | 41.7 | 34.2 | 48.1 | 42.5 | 40.6 | 48.5 | 42.4 |
160
+ | GPT -4 | 59.7 | 51.4 | 69.2 | 58.3 | 66.7 | 60.4 | 58.3 | 65.2 | 61.9 |
161
+ | Open -source Models |
162
+ | SteamSHP | 33.3 | 29.2 | 26.7 | 33.3 | 40.7 | 31.3 | 51.4 | 51.9 | 40.6 |
163
+ | PandaLM | 29.2 | 33.3 | 31.7 | 23.3 | 43.5 | 32.9 | 44.8 | 48.9 | 38.9 |
164
+ | LLaMA -2-Chat -13B | 20.8 | 27.8 | 19.2 | 20 | 31.5 | 27.5 | 35.8 | 31.8 | 29 |
165
+ | Vicuna -13B-v1.5 | 30.6 | 23.6 | 35 | 28.3 | 36.1 | 37.5 | 45.5 | 39.8 | 37.3 |
166
+ | WizardLM -13B-v1.2 | 22.2 | 20.8 | 32.5 | 19.2 | 28.7 | 25.4 | 29.2 | 33 | 27.8 |
167
+ | LLAMA -2-chat -70B | 34.7 | 33.3 | 36.7 | 35.8 | 51.4 | 54.2 | 47.2 | 47.7 | 45.9 |
168
+ | AUTO -J (13b) | 45.8 | 38.9 | 59.2 | 47.5 | 54.6 | 57.1 | **58** | 57.6 | 54.8 |
169
+ | **PairRM (0.4b)** | **56.94** | **52.78** | **58.33** | **55.83** | **61.57** | **59.17** | 57.64 | **62.5** | **59.05** |
170
+
171
+ #### HHH-Alignment and MT-bench human judgements
172
+
173
+ | Evaluator LM | HHH ALIGNMENT | | | | | MT BENCH HUMAN JUDG . |
174
+ |:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|:---------------------:|
175
+ | | Help . | Harm . | Hon . | Other | Total Avg . | Human Preference |
176
+ | RANDOM | 50 | 50 | 50 | 50 | 50 | 34.26 |
177
+ | STANFORDNLP REWARD MODEL | 69.49 | 60.34 | 52.46 | 51.16 | 58.82 | 44.79 |
178
+ | ALMOST REWARD MODEL | 74.58 | 67.24 | 78.69 | 86.05 | 76.02 | 49.9 |
179
+ | LLAMA2 -CHAT 7B | 66.1 | 81.03 | 70.49 | 74.42 | 72.85 | 51.78 |
180
+ | LLAMA2 -CHAT 13B | 74.58 | 87.93 | 55.74 | 79.07 | 73.76 | 52.34 |
181
+ | LLAMA2 -CHAT 70B | 66.1 | **89.66** | 67.21 | 74.42 | 74.21 | 53.67 |
182
+ | LLAMA2 -CHAT 13B+COARSE . | 68.74 | 68.97 | 65.57 | 67.44 | 67.42 | 46.89 |
183
+ | GPT -3.5-TURBO -0613 | 76.27 | 87.93 | 67.21 | 86.05 | 78.73 | 57.12 |
184
+ | PROMETHEUS 7B | 69.49 | 84.48 | 78.69 | 90.7 | 80.09 | 55.14 |
185
+ | PROMETHEUS 13B | 81.36 | 82.76 | 75.41 | 76.74 | 79.19 | 57.72 |
186
+ | **PairRM (0.4b)** | **84.75** | 84.48 | **80.33** | **90.7** | **84.62** | **59** |
187
+ | GPT -4-0613 | 91.53 | 93.1 | 85.25 | 83.72 | 88.69 | 63.87 |
188
+
189
+ **While PairRM is a extremely small model (0.4B) based on deberta, the pairwise comparison aggrement performance approches GPT-4's performance!**
190
+
191
+ Two reasons to attribute:
192
+ - Our PairRM specically designed model arch for pairwise comparison through bidirectional attention (See LLM-blender paper for more details)
193
+ - The high-quality and large-scale human preference annotation data it was train on (see training dataset list on this hugging face page)
194
+
195
+
196
+
197
+
198
  ## Citation
199
  If you are using PairRM in your research, please cite LLM-blender.
200
  ```bibtex