Update README.md
Browse files
README.md
CHANGED
|
@@ -10,18 +10,192 @@ pipeline_tag: audio-to-audio
|
|
| 10 |
|
| 11 |
# Llama-Mimi-1.3B
|
| 12 |
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
## How to Use
|
| 18 |
|
|
|
|
|
|
|
| 19 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
```
|
| 22 |
|
| 23 |
|
| 24 |
## Citation
|
| 25 |
|
| 26 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
```
|
|
|
|
| 10 |
|
| 11 |
# Llama-Mimi-1.3B
|
| 12 |
|
| 13 |
+
[📃Paper](https://arxiv.org/abs/2509.14882) | [🧑💻Code](https://github.com/llm-jp/llama-mimi) | [🗣️Demo](https://speed1313.github.io/llama-mimi/)
|
| 14 |
|
| 15 |
+
<img src="https://speed1313.github.io/llama-mimi/data/llama-mimi.svg" width="50%"/>
|
| 16 |
+
|
| 17 |
+
## Introduction
|
| 18 |
+
Llama-Mimi is a speech language model that uses a unified tokenizer (Mimi) and a single Transformer decoder (Llama) to jointly model sequences of interleaved semantic and acoustic tokens.
|
| 19 |
+
Trained on ~240k hours of English audio, Llama-Mimi achieves state-of-the-art performance in acoustic consistency on [SALMon](https://arxiv.org/abs/2409.07437) and effectively preserves speaker identity.
|
| 20 |
+
Visit our [demo site](https://speed1313.github.io/llama-mimi/) to hear generated speech samples.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Models
|
| 24 |
+
- Llama-Mimi-1.3B, https://huggingface.co/llm-jp/Llama-Mimi-1.3b
|
| 25 |
+
- Llama-Mimi-8B, https://huggingface.co/llm-jp/Llama-Mimi-8b
|
| 26 |
|
| 27 |
|
| 28 |
## How to Use
|
| 29 |
|
| 30 |
+
Generate audio continuations from a given audio prompt.
|
| 31 |
+
|
| 32 |
```python
|
| 33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 34 |
+
import torch
|
| 35 |
+
from transformers import MimiModel, AutoFeatureExtractor
|
| 36 |
+
from transformers import StoppingCriteria
|
| 37 |
+
import random
|
| 38 |
+
import numpy as np
|
| 39 |
+
import torchaudio
|
| 40 |
+
import soundfile as sf
|
| 41 |
+
import re
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def text_to_audio_values(
|
| 45 |
+
text: str,
|
| 46 |
+
num_quantizers: int,
|
| 47 |
+
output_file: str,
|
| 48 |
+
audio_tokenizer,
|
| 49 |
+
feature_extractor,
|
| 50 |
+
):
|
| 51 |
+
# Extract (val, idx) pairs from the <val_idx> format in the text
|
| 52 |
+
matches = re.findall(r"<(\d+)_(\d+)>", text)
|
| 53 |
+
vals = []
|
| 54 |
+
|
| 55 |
+
for i in range(0, len(matches), num_quantizers):
|
| 56 |
+
chunk = matches[i : i + num_quantizers]
|
| 57 |
+
if len(chunk) < num_quantizers:
|
| 58 |
+
break
|
| 59 |
+
indices = [int(idx) for _, idx in chunk]
|
| 60 |
+
if indices == list(range(num_quantizers)):
|
| 61 |
+
vals.extend(int(val) for val, _ in chunk)
|
| 62 |
+
else:
|
| 63 |
+
break
|
| 64 |
+
|
| 65 |
+
vals = vals[: len(vals) - len(vals) % num_quantizers]
|
| 66 |
+
tensor_bt4 = torch.tensor(vals).reshape(1, -1, num_quantizers) # (B, T, 4)
|
| 67 |
+
tensor_b4t = tensor_bt4.transpose(1, 2) # (B, 4, T)
|
| 68 |
+
|
| 69 |
+
audio_values = audio_tokenizer.decode(tensor_b4t)[0]
|
| 70 |
+
|
| 71 |
+
sf.write(
|
| 72 |
+
output_file,
|
| 73 |
+
audio_values[0][0].detach().cpu().numpy(),
|
| 74 |
+
feature_extractor.sampling_rate,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def audio_array_to_text(
|
| 79 |
+
audio_array: torch.tensor,
|
| 80 |
+
audio_tokenizer,
|
| 81 |
+
feature_extractor,
|
| 82 |
+
num_quantizers: int,
|
| 83 |
+
max_seconds: int = 20,
|
| 84 |
+
) -> str:
|
| 85 |
+
# truncate the audio array to the expected length
|
| 86 |
+
if audio_array.shape[-1] > max_seconds * feature_extractor.sampling_rate:
|
| 87 |
+
audio_array = audio_array[: max_seconds * feature_extractor.sampling_rate]
|
| 88 |
+
#
|
| 89 |
+
inputs = feature_extractor(
|
| 90 |
+
raw_audio=audio_array,
|
| 91 |
+
sampling_rate=feature_extractor.sampling_rate,
|
| 92 |
+
return_tensors="pt",
|
| 93 |
+
).to(audio_tokenizer.device)
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
encoder_outputs = audio_tokenizer.encode(
|
| 96 |
+
inputs["input_values"],
|
| 97 |
+
inputs["padding_mask"],
|
| 98 |
+
num_quantizers=num_quantizers,
|
| 99 |
+
)
|
| 100 |
+
flatten_audio_codes = encoder_outputs.audio_codes.transpose(1, 2).reshape(-1)
|
| 101 |
+
assert flatten_audio_codes.numel() % num_quantizers == 0
|
| 102 |
+
|
| 103 |
+
steps = []
|
| 104 |
+
for i in range(0, flatten_audio_codes.numel(), num_quantizers):
|
| 105 |
+
group = [
|
| 106 |
+
f"<{flatten_audio_codes[i + j].item()}_{j}>"
|
| 107 |
+
for j in range(num_quantizers)
|
| 108 |
+
]
|
| 109 |
+
steps.append(group)
|
| 110 |
+
|
| 111 |
+
parts = [tok for step in steps for tok in step]
|
| 112 |
+
|
| 113 |
+
text = "".join(parts)
|
| 114 |
+
|
| 115 |
+
del inputs, encoder_outputs, flatten_audio_codes
|
| 116 |
+
torch.cuda.empty_cache()
|
| 117 |
+
return f"<audio>{text}</audio>"
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def set_determinism(seed: int = 42) -> None:
|
| 121 |
+
random.seed(seed)
|
| 122 |
+
np.random.seed(seed)
|
| 123 |
+
torch.manual_seed(seed)
|
| 124 |
+
|
| 125 |
+
class StopOnAudioEnd(StoppingCriteria):
|
| 126 |
+
def __init__(self, tokenizer):
|
| 127 |
+
self.tokenizer = tokenizer
|
| 128 |
+
self.target_text = "</audio>"
|
| 129 |
+
self.target_ids = tokenizer(
|
| 130 |
+
self.target_text, add_special_tokens=False
|
| 131 |
+
).input_ids
|
| 132 |
+
|
| 133 |
+
def __call__(self, input_ids, scores, **kwargs):
|
| 134 |
+
if len(input_ids[0]) < len(self.target_ids):
|
| 135 |
+
return False
|
| 136 |
+
return input_ids[0][-len(self.target_ids) :].tolist() == self.target_ids
|
| 137 |
+
|
| 138 |
+
set_determinism()
|
| 139 |
+
|
| 140 |
+
temperature = 0.8
|
| 141 |
+
top_k = 30
|
| 142 |
+
do_sample = True
|
| 143 |
+
max_length = 1024
|
| 144 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 145 |
+
model_id = "llm-jp/Llama-Mimi-1.3B"
|
| 146 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval().to(device)
|
| 147 |
+
num_quantizers = model.config.num_quantizers
|
| 148 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 149 |
+
audio_tokenizer = MimiModel.from_pretrained("kyutai/mimi")
|
| 150 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("kyutai/mimi")
|
| 151 |
+
stopping_criteria = StopOnAudioEnd(tokenizer)
|
| 152 |
+
|
| 153 |
+
audio_file = "assets/great_day_gt.wav"
|
| 154 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 155 |
+
if sample_rate != feature_extractor.sampling_rate:
|
| 156 |
+
waveform = torchaudio.transforms.Resample(sample_rate, feature_extractor.sampling_rate)(waveform)
|
| 157 |
+
sample_rate = feature_extractor.sampling_rate
|
| 158 |
+
prompt_array = waveform.squeeze().cpu().numpy()
|
| 159 |
+
|
| 160 |
+
text = audio_array_to_text(
|
| 161 |
+
prompt_array, audio_tokenizer, feature_extractor, num_quantizers
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
text = text.replace("</audio>", "")
|
| 165 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 166 |
+
|
| 167 |
+
with torch.no_grad():
|
| 168 |
+
generated = model.generate(
|
| 169 |
+
**inputs,
|
| 170 |
+
max_length=max_length,
|
| 171 |
+
do_sample=do_sample,
|
| 172 |
+
temperature=temperature,
|
| 173 |
+
top_k=top_k,
|
| 174 |
+
stopping_criteria=[stopping_criteria],
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
generated_text = tokenizer.decode(generated[0])
|
| 178 |
|
| 179 |
+
text_to_audio_values(
|
| 180 |
+
generated_text,
|
| 181 |
+
num_quantizers=num_quantizers,
|
| 182 |
+
output_file="output.wav",
|
| 183 |
+
audio_tokenizer=audio_tokenizer,
|
| 184 |
+
feature_extractor=feature_extractor,
|
| 185 |
+
)
|
| 186 |
```
|
| 187 |
|
| 188 |
|
| 189 |
## Citation
|
| 190 |
|
| 191 |
```
|
| 192 |
+
@misc{sugiura2025llamamimispeechlanguagemodels,
|
| 193 |
+
title={Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens},
|
| 194 |
+
author={Issa Sugiura and Shuhei Kurita and Yusuke Oda and Ryuichiro Higashinaka},
|
| 195 |
+
year={2025},
|
| 196 |
+
eprint={2509.14882},
|
| 197 |
+
archivePrefix={arXiv},
|
| 198 |
+
primaryClass={cs.CL},
|
| 199 |
+
url={https://arxiv.org/abs/2509.14882},
|
| 200 |
+
}
|
| 201 |
```
|