ppo-lunarlander-v2 / config.json
llmvetter's picture
First test upload of LunarLander RL model
ef91de8 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780cdaf89630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780cdaf896c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780cdaf89750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780cdaf897e0>", "_build": "<function ActorCriticPolicy._build at 0x780cdaf89870>", "forward": "<function ActorCriticPolicy.forward at 0x780cdaf89900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x780cdaf89990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780cdaf89a20>", "_predict": "<function ActorCriticPolicy._predict at 0x780cdaf89ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780cdaf89b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780cdaf89bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780cdaf89c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780cdaf369c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714996599111916187, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOcSL6u3um8zUfTOrcKcznekks+wu4SugAAgD8AAIA/mjopvbCIrj+/fQK/yTyYvlAlJ7wJXgW+AAAAAAAAAAAa8u+9/Cw7Pf2lBD3z+yG+9+fsvOw7obwAAAAAAAAAAGYgPbwpSZs+2bMhvaHqZL7PYoS9w8M3PQAAAAAAAAAA2uGJvR7vhj+bGtu8ZhyXvrEKLb11Nis9AAAAAAAAAABA05U9XU5sPoaqozzmwhy+LxzaO/v/0TwAAAAAAAAAAE2dd73DyQi6chNxuMSeDrTjMag6irqMNwAAgD8AAIA/DeaIvWBSaT/uOxK+MGh9vnJarLwbN5m9AAAAAAAAAABN9F49SGOEupK3EToPdL41FR/iOuDXKbkAAIA/AACAP5rkuDyP+2o7oc8KPdLeMr6g0va4uMZoPQAAAAAAAAAATaCMvY4t+D14INA8RNvPvR5/+7wQeNK9AAAAAAAAAABNsDG9bOYPPwxIozwvGSO+x9snPGWKjzsAAAAAAAAAAHPAsb06oYc/Z/9IvNvLlb4lb7C9E+RtvQAAAAAAAAAATbARPeHoibqFzyQ4ZHcVM2JHiLrgfD+3AACAPwAAgD+z1JA9j9IhOY7ZOzXR4scw60CkunDOVrQAAIA/AACAP83x3j3DgXS6nMwSukAlCrW8y+q5GOUrOQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNjA3kxREaMAWyUTegDjAF0lEdAkgmW1hLGrHV9lChoBkdAYFeUUwi7kGgHTegDaAhHQJIKJxQzk6t1fZQoaAZHQHCYKr3j+71oB01ZAWgIR0CSDTV45cTrdX2UKGgGR0BjlWBe5WilaAdN6ANoCEdAkg1si0OVgXV9lChoBkdAY5V3r2QGOmgHTegDaAhHQJION3bEgnt1fZQoaAZHQF/ENWluWKNoB03oA2gIR0CSLWdNnGsFdX2UKGgGR0BhuSakRBeHaAdN6ANoCEdAkjPVCb+cY3V9lChoBkdAYaPjMFEApGgHTegDaAhHQJI7afGuLaV1fZQoaAZHQFl7D8cdYGNoB03oA2gIR0CSO3yRB/qgdX2UKGgGR0Bg3HzH0btJaAdN6ANoCEdAkj6hjSXt0HV9lChoBkdAZZPGaQV9GGgHTegDaAhHQJI/7p+tr9F1fZQoaAZHQGexkwWWQfZoB03oA2gIR0CSQ8OYIBzWdX2UKGgGR0Bdi69kBjnWaAdN6ANoCEdAkkf/SH/LknV9lChoBkdAbZ+h4dIXj2gHTRIDaAhHQJJJoRIz3yt1fZQoaAZHQGAMmlZX+2poB03oA2gIR0CSSsnDBMzudX2UKGgGR0BlAQB1cMVlaAdN6ANoCEdAklXHkYGdJHV9lChoBkdAYupSflIVd2gHTegDaAhHQJJZen889wF1fZQoaAZHQGdlD/dZaFFoB03oA2gIR0CSWhW69TP0dX2UKGgGR0Blju4Cp3otaAdN6ANoCEdAkl2iCrcTJ3V9lChoBkdAXaK5QP7N0WgHTegDaAhHQJJd3we/5+J1fZQoaAZHQGE4NKyv9tNoB03oA2gIR0CSXteyAxzrdX2UKGgGR0BwKM2OyVv/aAdNawFoCEdAkmJlaGHpKXV9lChoBkdASzsqQRwqAmgHTQwBaAhHQJJlMVWS2Yx1fZQoaAZHQG1e64lQdjpoB00vA2gIR0CSeHfQa72+dX2UKGgGR0BhoWJ3xFy8aAdN6ANoCEdAkoAXpbD/EXV9lChoBkdAcUGs+mm+CmgHTW8BaAhHQJKOlnGsFMZ1fZQoaAZHQDpC5CngpBpoB00VAWgIR0CSkxN96TnrdX2UKGgGR0Bmn4cLjPv8aAdN6ANoCEdAkpXTaGpMpXV9lChoBkdAY65Vf/m1Y2gHTegDaAhHQJKV4/C66J91fZQoaAZHQHBvKq814xFoB01sA2gIR0CSlweuFHrhdX2UKGgGR0BwtOd9Ujs2aAdNTAFoCEdAkpd9tl7MPnV9lChoBkdAbdqo3rD632gHTR0DaAhHQJKYTfJmukl1fZQoaAZHQGKJLZJ04ipoB03oA2gIR0CSmNNbkfcOdX2UKGgGR0BjGI+lj3EiaAdN6ANoCEdAkpnrhR64UnV9lChoBkdAcMrq0MPSUmgHTQUCaAhHQJKaMqnWJ791fZQoaAZHQG2fHE2pAD9oB00MAmgIR0CSnVcnE2pAdX2UKGgGR0Bm160Y0l7daAdN6ANoCEdAkqBFn/T9bXV9lChoBkfAJh4PXkHUt2gHTQ0BaAhHQJKguKLsKLN1fZQoaAZHQHDeBshxHXpoB018AmgIR0CSqzoE0SAZdX2UKGgGR0Bk0RYvFm4BaAdN6ANoCEdAkq+EwnH/+HV9lChoBkdAYvRcvduYQmgHTegDaAhHQJKwLW8RL9N1fZQoaAZHQGOwRGc4HX5oB03oA2gIR0CStG+cpb2UdX2UKGgGR0BweuLKmsNlaAdNQAJoCEdAkrfqoddVvXV9lChoBkdAcGL7J4jbBWgHTZ8CaAhHQJLTRCMPz4F1fZQoaAZHQHDhvn4fwJBoB02VAmgIR0CS00aqjrRjdX2UKGgGR0BwZy2fChvjaAdNxAJoCEdAktSO+Eh7mnV9lChoBkdAbvw9V3ljmWgHTdUCaAhHQJLYQkD6nBN1fZQoaAZHQG6orT6SDAdoB02TAWgIR0CS3XiKR+z/dX2UKGgGR0BwwsS39aUzaAdNLwNoCEdAkt4PU8V58nV9lChoBkdAYrdqMWGh3GgHTegDaAhHQJLe4kyDZlF1fZQoaAZHQGO6VZkkKNRoB03oA2gIR0CS4+eLvTgEdX2UKGgGR0Bg71GoaUA1aAdN6ANoCEdAkuP2SZBsynV9lChoBkdAbHlScbzbvmgHTUECaAhHQJLmZ65XlsB1fZQoaAZHQFBOM23rleZoB00qAWgIR0CS6YbBoEjgdX2UKGgGR0BueFdJJ5E/aAdN3wNoCEdAkuzAq/dqL3V9lChoBkdAY6VihnJ1aGgHTegDaAhHQJLxpV6u4gB1fZQoaAZHQGGBal+EytVoB03oA2gIR0CS8jQ7cO9WdX2UKGgGR0BwzSJCSidraAdNtAJoCEdAkvLiWJJoTXV9lChoBkdAbJj82rGR3mgHTaEDaAhHQJL4jLzPKMh1fZQoaAZHQHBMR4Y77sRoB02NAmgIR0CS+fjdHlOodX2UKGgGR0BwoNo0ygwoaAdNJAJoCEdAkv5zJQtSRHV9lChoBkdAcBXqtHQQc2gHTTECaAhHQJMAB3KSxJN1fZQoaAZHQG1LT6rNnoRoB010A2gIR0CTAHPuG9HudX2UKGgGR0Bs6dlGwzLwaAdNCgJoCEdAkwKWh/RVqHV9lChoBkdAbWF3+uNgjWgHTZQBaAhHQJMI1p+MIeJ1fZQoaAZHQHHZsDwH7gtoB038AWgIR0CTCVNDtw71dX2UKGgGR0Bg9LYGt6omaAdN6ANoCEdAkwyBM36yjnV9lChoBkdAYO54cFQl8mgHTegDaAhHQJMhh0+1Sfl1fZQoaAZHQHBLeyNXHR1oB00IAmgIR0CTIiUEPlMidX2UKGgGR0BvJRqfvnbJaAdNaANoCEdAkyK0Re1KG3V9lChoBkdAb/hF2mpEQWgHTcUBaAhHQJMkaJaaCtl1fZQoaAZHQHClN92HLzRoB03RAmgIR0CTJZ+WWyC4dX2UKGgGR0Bw91AeJYT1aAdNlQFoCEdAkycKeTV2BHV9lChoBkdAbmh3Fkxyn2gHTWEBaAhHQJMoOGpMpPR1fZQoaAZHQHBsHa37UG5oB02YAWgIR0CTKMu8K5TZdX2UKGgGR0BveggTyrggaAdNsgJoCEdAkymkONHYpXV9lChoBkdAYs0ZbY9PlGgHTegDaAhHQJMt+/20zCV1fZQoaAZHQGUosmOU+s5oB03oA2gIR0CTMLDUVi4KdX2UKGgGR0BwLobdadMCaAdNRQFoCEdAkzHq7EpAlnV9lChoBkdAavaYpDu0C2gHTVIBaAhHQJMx+QNkOI91fZQoaAZHQGw6iml67d1oB03bAWgIR0CTNF6hxo7FdX2UKGgGR0Bw+VBZ6lchaAdNdQFoCEdAkzUR73PAwnV9lChoBkdAbzdWiDdxhmgHTVQBaAhHQJM2f5bhWHV1fZQoaAZHQGtinjyWiURoB02ZAWgIR0CTOLYWcjJNdX2UKGgGR0BskLyMDOkdaAdNrwFoCEdAkz7lVo6CDnV9lChoBkdAYvu2KEWZZ2gHTegDaAhHQJNBjBTGYKJ1fZQoaAZHQHA15qIrOJNoB03cAmgIR0CTQoGff4yodX2UKGgGR0BxI68J2MbWaAdNQgFoCEdAk0ME0zj3mHV9lChoBkdAcbXZ5AyEc2gHTZkBaAhHQJNDuzJIUah1fZQoaAZHQGueqHO8kD9oB01GAmgIR0CTRMHoX9BKdX2UKGgGR0BkGRwQ176YaAdN6ANoCEdAk0aDyOJcgXV9lChoBkdAcZ9O2y9mH2gHTTcCaAhHQJNGpZeRgZ11fZQoaAZHQG/yJOvdM0xoB01gAWgIR0CTSBvexfOVdX2UKGgGR0BwLD0Dlo12aAdNigJoCEdAk0jguAZsK3V9lChoBkdAcdf6QNkOJGgHTaABaAhHQJNJW2TgVGl1fZQoaAZHQGuTxHww0wdoB02FA2gIR0CTTTDiOvMbdX2UKGgGR0BxK6Eg4ffXaAdNfAJoCEdAk1F0qDsdDXV9lChoBkdAcAO5kbxVhmgHTTcBaAhHQJNR4VQAMlV1fZQoaAZHQG5otOM2m51oB019AWgIR0CTUhE/0NBodX2UKGgGR0Breq9Zid8RaAdNfwFoCEdAk1RJpN9H+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}