Delete modeling_ernie4_5_moe.py
Browse files- modeling_ernie4_5_moe.py +0 -1504
modeling_ernie4_5_moe.py
DELETED
|
@@ -1,1504 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
from copy import deepcopy
|
| 16 |
-
from dataclasses import dataclass
|
| 17 |
-
from functools import partial
|
| 18 |
-
from typing import Callable, Optional, Tuple, Union
|
| 19 |
-
|
| 20 |
-
import torch
|
| 21 |
-
import torch.nn.functional as F
|
| 22 |
-
import torch.nn as nn
|
| 23 |
-
|
| 24 |
-
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 25 |
-
from transformers.generation import GenerationMixin
|
| 26 |
-
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 27 |
-
from transformers.modeling_outputs import ModelOutput, MoeCausalLMOutputWithPast
|
| 28 |
-
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 29 |
-
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 30 |
-
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 31 |
-
from transformers.processing_utils import Unpack
|
| 32 |
-
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, logging, is_torch_flex_attn_available
|
| 33 |
-
|
| 34 |
-
from .configuration_ernie4_5_moe import Ernie4_5_MoeConfig
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
if is_torch_flex_attn_available():
|
| 38 |
-
from torch.nn.attention.flex_attention import BlockMask
|
| 39 |
-
|
| 40 |
-
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
| 41 |
-
|
| 42 |
-
logger = logging.get_logger(__name__)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
| 46 |
-
|
| 47 |
-
@dataclass
|
| 48 |
-
class Erine4_5_MoeModelOutputWithPast(ModelOutput):
|
| 49 |
-
last_hidden_state: Optional[torch.FloatTensor] = None
|
| 50 |
-
past_key_values: Optional[Cache] = None
|
| 51 |
-
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 52 |
-
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 53 |
-
router_loss: Optional[torch.FloatTensor] = None
|
| 54 |
-
gate_logits: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 55 |
-
mtp_outputs: Optional[torch.FloatTensor] = None
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
@dataclass
|
| 59 |
-
class Ernie4_5_MoeCausalLMOutputWithPast(MoeCausalLMOutputWithPast):
|
| 60 |
-
router_loss: Optional[torch.FloatTensor] = None
|
| 61 |
-
|
| 62 |
-
def rotate_half(x):
|
| 63 |
-
"""Rotates half the hidden dims of the input."""
|
| 64 |
-
|
| 65 |
-
x1 = x[..., 0::2]
|
| 66 |
-
x2 = x[..., 1::2]
|
| 67 |
-
return torch.stack((-x2, x1), dim=-1).reshape(x.shape)
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 71 |
-
"""
|
| 72 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 73 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 74 |
-
"""
|
| 75 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 76 |
-
if n_rep == 1:
|
| 77 |
-
return hidden_states
|
| 78 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 79 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 83 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 84 |
-
|
| 85 |
-
Args:
|
| 86 |
-
q (`torch.Tensor`): The query tensor.
|
| 87 |
-
k (`torch.Tensor`): The key tensor.
|
| 88 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 89 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 90 |
-
position_ids (`torch.Tensor`, *optional*):
|
| 91 |
-
Deprecated and unused.
|
| 92 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 93 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 94 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 95 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 96 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 97 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 98 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 99 |
-
Returns:
|
| 100 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 101 |
-
"""
|
| 102 |
-
orig_dtype = q.dtype
|
| 103 |
-
sin_pos = torch.stack([sin, sin], dim=-1).reshape(*sin.shape[:-1],-1)
|
| 104 |
-
cos_pos = torch.stack([cos, cos], dim=-1).reshape(*sin.shape[:-1],-1)
|
| 105 |
-
q_embed = (q.float() * cos_pos) + (rotate_half(q).float() * sin_pos)
|
| 106 |
-
k_embed = (k.float() * cos_pos) + (rotate_half(k).float() * sin_pos)
|
| 107 |
-
return q_embed.to(orig_dtype), k_embed.to(orig_dtype)
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def eager_attention_forward(
|
| 111 |
-
module: nn.Module,
|
| 112 |
-
query: torch.Tensor,
|
| 113 |
-
key: torch.Tensor,
|
| 114 |
-
value: torch.Tensor,
|
| 115 |
-
attention_mask: Optional[torch.Tensor],
|
| 116 |
-
scaling: float,
|
| 117 |
-
dropout: float = 0.0,
|
| 118 |
-
**kwargs,
|
| 119 |
-
):
|
| 120 |
-
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 121 |
-
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 122 |
-
|
| 123 |
-
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 124 |
-
if attention_mask is not None:
|
| 125 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 126 |
-
attn_weights = attn_weights + causal_mask.to(attn_weights.device)
|
| 127 |
-
|
| 128 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 129 |
-
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 130 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
| 131 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 132 |
-
|
| 133 |
-
return attn_output, attn_weights
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def topk_gate_func(
|
| 137 |
-
module: nn.Module,
|
| 138 |
-
hidden_states: torch.Tensor,
|
| 139 |
-
):
|
| 140 |
-
capacity = module.get_capacity(hidden_states.shape[0])
|
| 141 |
-
with torch.autocast(device_type='cuda',dtype=torch.float32):
|
| 142 |
-
logits = module.gate(hidden_states.float())
|
| 143 |
-
router_loss = torch.zeros([1], dtype=torch.float32, device=hidden_states.device)
|
| 144 |
-
router_loss.detach()
|
| 145 |
-
return logits, capacity, router_loss
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
class Ernie4_5_ResidualWithDropout(nn.Module):
|
| 149 |
-
"""
|
| 150 |
-
Fused dropout implementation with residual connection support.
|
| 151 |
-
|
| 152 |
-
This layer combines dropout and residual addition in a single operation for better performance,
|
| 153 |
-
particularly on GPU devices. The dropout is conditionally applied based on the probability.
|
| 154 |
-
|
| 155 |
-
Args:
|
| 156 |
-
prob (float): Dropout probability (between 0 and 1)
|
| 157 |
-
|
| 158 |
-
Attributes:
|
| 159 |
-
prob (float): Stores the dropout probability
|
| 160 |
-
dropout (nn.Dropout): The actual dropout layer instance
|
| 161 |
-
"""
|
| 162 |
-
|
| 163 |
-
def __init__(self, prob):
|
| 164 |
-
"""
|
| 165 |
-
Initialize the fused dropout layer.
|
| 166 |
-
|
| 167 |
-
Args:
|
| 168 |
-
prob (float): Dropout probability (0 means no dropout)
|
| 169 |
-
"""
|
| 170 |
-
super().__init__()
|
| 171 |
-
self.prob = prob
|
| 172 |
-
self.dropout = nn.Dropout(p=prob)
|
| 173 |
-
|
| 174 |
-
def forward(self, x, y):
|
| 175 |
-
"""
|
| 176 |
-
Forward pass of the fused dropout layer.
|
| 177 |
-
|
| 178 |
-
Args:
|
| 179 |
-
x (torch.Tensor): Input tensor to potentially apply dropout on
|
| 180 |
-
y (torch.Tensor): Residual tensor to add to the (possibly dropped out) x
|
| 181 |
-
|
| 182 |
-
Returns:
|
| 183 |
-
torch.Tensor: Result of x (with optional dropout) + y
|
| 184 |
-
"""
|
| 185 |
-
if self.prob > 0:
|
| 186 |
-
x = self.dropout(x)
|
| 187 |
-
output = x + y
|
| 188 |
-
|
| 189 |
-
return output
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
class Ernie4_5_Attention(nn.Module):
|
| 193 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 194 |
-
|
| 195 |
-
def __init__(self, config, layer_idx=0):
|
| 196 |
-
"""
|
| 197 |
-
Args:
|
| 198 |
-
config (ErnieConfig): Model configuration.
|
| 199 |
-
layer_idx (int, optional): Index in transformer stack. Defaults to 0.
|
| 200 |
-
"""
|
| 201 |
-
super().__init__()
|
| 202 |
-
self.layer_idx = layer_idx
|
| 203 |
-
self.hidden_size = config.hidden_size
|
| 204 |
-
self.num_heads = config.num_attention_heads
|
| 205 |
-
self.num_key_value_heads = config.num_key_value_heads if config.num_key_value_heads is not None else self.nums_head
|
| 206 |
-
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 207 |
-
self.head_dim = self.hidden_size // self.num_heads
|
| 208 |
-
self.freq_allocation = config.freq_allocation if hasattr(config, "freq_allocation") else 0
|
| 209 |
-
self.scaling = self.head_dim**-0.5
|
| 210 |
-
self.attention_dropout = getattr(config, "attention_probs_dropout_prob", 0.0)
|
| 211 |
-
self.is_causal = True
|
| 212 |
-
|
| 213 |
-
self.q_proj = nn.Linear(
|
| 214 |
-
self.hidden_size,
|
| 215 |
-
self.num_heads * self.head_dim,
|
| 216 |
-
bias=config.use_bias,
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
self.k_proj = nn.Linear(
|
| 220 |
-
self.hidden_size,
|
| 221 |
-
self.num_key_value_heads * self.head_dim,
|
| 222 |
-
bias=config.use_bias,
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
self.v_proj = nn.Linear(
|
| 226 |
-
self.hidden_size,
|
| 227 |
-
self.num_key_value_heads * self.head_dim,
|
| 228 |
-
bias=config.use_bias,
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
self.o_proj = nn.Linear(
|
| 232 |
-
self.hidden_size,
|
| 233 |
-
self.hidden_size,
|
| 234 |
-
bias=config.use_bias,
|
| 235 |
-
)
|
| 236 |
-
|
| 237 |
-
self.config = config
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
def forward(
|
| 241 |
-
self,
|
| 242 |
-
hidden_states: torch.Tensor,
|
| 243 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 244 |
-
past_key_value: Optional[Cache] = None,
|
| 245 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 246 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 247 |
-
position_embeddings: tuple[torch.Tensor, torch.Tensor] = None,
|
| 248 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
| 249 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 250 |
-
B, L = hidden_states.shape[:-1]
|
| 251 |
-
|
| 252 |
-
query_states = self.q_proj(hidden_states).view(B, L, self.num_heads, -1).transpose(1, 2)
|
| 253 |
-
key_states = self.k_proj(hidden_states).view(B, L, self.num_key_value_heads, -1).transpose(1, 2)
|
| 254 |
-
value_states = self.v_proj(hidden_states).view(B, L, self.num_key_value_heads, -1).transpose(1, 2)
|
| 255 |
-
|
| 256 |
-
cos, sin = position_embeddings
|
| 257 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 258 |
-
|
| 259 |
-
if past_key_value is not None:
|
| 260 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 261 |
-
cache_kwargs = {"cache_position": cache_position}
|
| 262 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 263 |
-
|
| 264 |
-
attention_interface: Callable = eager_attention_forward
|
| 265 |
-
if self.config._attn_implementation != "eager":
|
| 266 |
-
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 267 |
-
|
| 268 |
-
attn_output, attn_weights = attention_interface(
|
| 269 |
-
self,
|
| 270 |
-
query_states,
|
| 271 |
-
key_states,
|
| 272 |
-
value_states,
|
| 273 |
-
attention_mask,
|
| 274 |
-
dropout=0.0 if not self.training else self.attention_dropout,
|
| 275 |
-
scaling=self.scaling,
|
| 276 |
-
**kwargs,
|
| 277 |
-
)
|
| 278 |
-
attn_output = attn_output.reshape(B, L, -1).contiguous()
|
| 279 |
-
attn_output = self.o_proj(attn_output)
|
| 280 |
-
|
| 281 |
-
return attn_output, attn_weights
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
class Ernie4_5_MLP(nn.Module):
|
| 285 |
-
"""
|
| 286 |
-
Ernie4_5_MLP - Gated Multi-Layer Perceptron module used in Ernie model.
|
| 287 |
-
"""
|
| 288 |
-
|
| 289 |
-
def __init__(self, config,intermediate_size=None):
|
| 290 |
-
"""
|
| 291 |
-
Initialize the MLP module with configuration options.
|
| 292 |
-
|
| 293 |
-
Args:
|
| 294 |
-
config: Model configuration object with attributes:
|
| 295 |
-
- hidden_size: int
|
| 296 |
-
- intermediate_size: int
|
| 297 |
-
- use_bias: bool
|
| 298 |
-
layer_idx (int): Index of current layer (default: 0)
|
| 299 |
-
"""
|
| 300 |
-
super().__init__()
|
| 301 |
-
self.config = config
|
| 302 |
-
self.hidden_size = config.hidden_size
|
| 303 |
-
self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
|
| 304 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
|
| 305 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
|
| 306 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
def forward(self, x):
|
| 310 |
-
"""
|
| 311 |
-
Args:
|
| 312 |
-
x (Tensor): shape [batch_size, seq_len, hidden_size]
|
| 313 |
-
|
| 314 |
-
Returns:
|
| 315 |
-
Tensor: shape [batch_size, seq_len, hidden_size]
|
| 316 |
-
"""
|
| 317 |
-
down_proj = self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
|
| 318 |
-
return down_proj
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
class Ernie4_5_MoeStatics(nn.Module):
|
| 322 |
-
"""
|
| 323 |
-
Stores MoE (Mixture of Experts) statistics
|
| 324 |
-
and expert usage information.
|
| 325 |
-
"""
|
| 326 |
-
|
| 327 |
-
def __init__(self, config):
|
| 328 |
-
"""
|
| 329 |
-
Initialize MoE statistics tracking.
|
| 330 |
-
|
| 331 |
-
Args:
|
| 332 |
-
config: Model configuration containing MoE parameters
|
| 333 |
-
"""
|
| 334 |
-
super().__init__()
|
| 335 |
-
|
| 336 |
-
num_experts = config.moe_num_experts
|
| 337 |
-
num_experts_groups = 1
|
| 338 |
-
|
| 339 |
-
self.e_score_correction_bias = nn.Parameter(
|
| 340 |
-
torch.zeros(num_experts_groups, num_experts, dtype=torch.float32),
|
| 341 |
-
requires_grad=False
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
class Ernie4_5_MoeMLP(nn.Module):
|
| 345 |
-
"""Mixture of Experts (MoE) variant of ERNIE's MLP layer."""
|
| 346 |
-
|
| 347 |
-
def __init__(self,config):
|
| 348 |
-
super().__init__()
|
| 349 |
-
self.config = config
|
| 350 |
-
self.k = config.moe_k
|
| 351 |
-
self.sinkhorn_2gate = config.sinkhorn_2gate
|
| 352 |
-
self.sinkhorn_temp = config.sinkhorn_temp
|
| 353 |
-
|
| 354 |
-
moe_intermediate_size = config.moe_intermediate_size if config.moe_intermediate_size else config.intermediate_size
|
| 355 |
-
self.gate = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False, dtype=torch.float32)
|
| 356 |
-
if config.moe_gate_act == "softmax":
|
| 357 |
-
self.gate_act = partial(F.softmax, dim=-1)
|
| 358 |
-
elif config.moe_gate_act == "sigmoid":
|
| 359 |
-
self.gate_act = F.sigmoid
|
| 360 |
-
else:
|
| 361 |
-
raise ValueError(f"{config.moe_gate_act} is not supported.")
|
| 362 |
-
|
| 363 |
-
self.experts = nn.ModuleList(
|
| 364 |
-
[Ernie4_5_MLP(config,moe_intermediate_size) for i in range(config.moe_num_experts)]
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
if config.moe_use_aux_free:
|
| 368 |
-
self.moe_statics = Ernie4_5_MoeStatics(config)
|
| 369 |
-
|
| 370 |
-
self.use_correction_bias = config.moe_use_aux_free
|
| 371 |
-
self.num_local_experts = len(self.experts)
|
| 372 |
-
|
| 373 |
-
self.shared_experts = self._init_shared_experts()
|
| 374 |
-
|
| 375 |
-
def _init_shared_experts(self):
|
| 376 |
-
"""
|
| 377 |
-
Initialize the shared expert module.
|
| 378 |
-
|
| 379 |
-
Returns:
|
| 380 |
-
shared_experts: Shared expert module, returns None if no shared experts are needed.
|
| 381 |
-
|
| 382 |
-
"""
|
| 383 |
-
cfg = deepcopy(self.config)
|
| 384 |
-
if getattr(cfg, 'moe_num_shared_experts', 0) > 0:
|
| 385 |
-
if getattr(cfg, 'moe_intermediate_size', None):
|
| 386 |
-
cfg.intermediate_size = cfg.moe_intermediate_size * cfg.moe_num_shared_experts
|
| 387 |
-
else:
|
| 388 |
-
cfg.intermediate_size = cfg.intermediate_size * cfg.moe_num_shared_experts
|
| 389 |
-
shared_experts = Ernie4_5_MLP(cfg, cfg.intermediate_size)
|
| 390 |
-
else:
|
| 391 |
-
shared_experts = None
|
| 392 |
-
return shared_experts
|
| 393 |
-
|
| 394 |
-
def forward(
|
| 395 |
-
self,
|
| 396 |
-
input: torch.Tensor,
|
| 397 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 398 |
-
"""
|
| 399 |
-
Forward pass through MoE layer.
|
| 400 |
-
|
| 401 |
-
Args:
|
| 402 |
-
input (Tensor): Input tensor of shape [s, d].
|
| 403 |
-
token_type_ids: Optional tensor for token types.
|
| 404 |
-
|
| 405 |
-
Returns:
|
| 406 |
-
tuple: (output, combine_weights, router_loss, gate_logits)
|
| 407 |
-
"""
|
| 408 |
-
|
| 409 |
-
if input.dim() == 3:
|
| 410 |
-
orig_shape = input.shape
|
| 411 |
-
input = input.reshape(-1, input.shape[-1])
|
| 412 |
-
else:
|
| 413 |
-
orig_shape = None
|
| 414 |
-
assert input.dim() == 2, f"input Tensor must have dimensions: (s)equence, (d)im, got:{input.shape}"
|
| 415 |
-
|
| 416 |
-
assert self.gate is not None
|
| 417 |
-
|
| 418 |
-
gate_input = input
|
| 419 |
-
|
| 420 |
-
(
|
| 421 |
-
dispatched_input,
|
| 422 |
-
combine_weights,
|
| 423 |
-
dispatch_mask,
|
| 424 |
-
scatter_index,
|
| 425 |
-
router_loss,
|
| 426 |
-
gate_logits,
|
| 427 |
-
gate_prob
|
| 428 |
-
) = self.gate_and_dispatch(gate_input)
|
| 429 |
-
|
| 430 |
-
expert_out = self.forward_experts(dispatched_input)
|
| 431 |
-
|
| 432 |
-
combined_output = self.combine_expert_output(expert_out, combine_weights, scatter_index)
|
| 433 |
-
|
| 434 |
-
if self.shared_experts is not None:
|
| 435 |
-
shared_expert_out = self.shared_experts(gate_input)
|
| 436 |
-
combined_output += shared_expert_out
|
| 437 |
-
|
| 438 |
-
if orig_shape:
|
| 439 |
-
combined_output = combined_output.reshape(orig_shape[:-1] + (combined_output.shape[-1],))
|
| 440 |
-
|
| 441 |
-
return combined_output, combine_weights, router_loss, gate_logits
|
| 442 |
-
|
| 443 |
-
def forward_experts(self, dispatched_input: torch.Tensor) -> torch.Tensor:
|
| 444 |
-
"""
|
| 445 |
-
Forward pass through experts sequentially.
|
| 446 |
-
|
| 447 |
-
Args:
|
| 448 |
-
dispatched_input (Tensor): Input tensor of shape [num_experts, capacity, dim].
|
| 449 |
-
|
| 450 |
-
Returns:
|
| 451 |
-
Tensor: Expert outputs of shape [num_experts, capacity, dim].
|
| 452 |
-
"""
|
| 453 |
-
true_experts = self.experts
|
| 454 |
-
dispatched_input = dispatched_input.reshape(
|
| 455 |
-
1, self.num_local_experts, -1, dispatched_input.shape[-1]
|
| 456 |
-
)
|
| 457 |
-
expert_outputs = []
|
| 458 |
-
if isinstance(self.experts, nn.ModuleList):
|
| 459 |
-
chunks = dispatched_input.permute(1, 0, 2, 3).contiguous().unbind(0)
|
| 460 |
-
assert len(chunks) == len(true_experts), f"{len(chunks)}, {len(true_experts)}"
|
| 461 |
-
for chunk, expert in zip(chunks, true_experts):
|
| 462 |
-
expert_outputs.append(expert(chunk))
|
| 463 |
-
else:
|
| 464 |
-
dispatched_input = dispatched_input.permute(1, 0, 2, 3).contiguous()
|
| 465 |
-
orig_shape = dispatched_input.shape
|
| 466 |
-
chunks = dispatched_input.reshape(orig_shape[0], -1, orig_shape[-1])
|
| 467 |
-
chunks = self.experts(chunks)
|
| 468 |
-
chunks = chunks.reshape(orig_shape[:-1] + (chunks.shape[-1],)).unbind(0)
|
| 469 |
-
expert_outputs.extend(chunks)
|
| 470 |
-
|
| 471 |
-
expert_output = torch.stack(expert_outputs, dim=1)
|
| 472 |
-
return expert_output
|
| 473 |
-
|
| 474 |
-
def moe_gate_dispatch(
|
| 475 |
-
self,
|
| 476 |
-
x: torch.Tensor,
|
| 477 |
-
gate_logits: torch.Tensor,
|
| 478 |
-
k: int,
|
| 479 |
-
capacity: Optional[int],
|
| 480 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor,
|
| 481 |
-
torch.Tensor, torch.Tensor]:
|
| 482 |
-
|
| 483 |
-
S, H = x.shape
|
| 484 |
-
E = gate_logits.shape[1]
|
| 485 |
-
device = x.device
|
| 486 |
-
topk_prob, topk_idx = torch.topk(gate_logits, k, dim=-1)
|
| 487 |
-
combine_weights = topk_prob
|
| 488 |
-
expert_id = topk_idx
|
| 489 |
-
y = x.new_zeros((E, capacity, H))
|
| 490 |
-
scatter_index = x.new_full((k, S), -1, dtype=torch.int32)
|
| 491 |
-
|
| 492 |
-
# per-expert slot counters
|
| 493 |
-
slot_counter = torch.zeros(E, dtype=torch.int32, device=device)
|
| 494 |
-
|
| 495 |
-
for tok in range(S):
|
| 496 |
-
for route in range(k):
|
| 497 |
-
e = expert_id[tok, route].item()
|
| 498 |
-
slot = slot_counter[e].item()
|
| 499 |
-
if slot >= capacity:
|
| 500 |
-
combine_weights[tok, route] = 0.0
|
| 501 |
-
continue
|
| 502 |
-
|
| 503 |
-
# record mapping & dispatch activation
|
| 504 |
-
scatter_index[route, tok] = e * capacity + slot
|
| 505 |
-
y[e, slot] = x[tok]
|
| 506 |
-
slot_counter[e] += 1
|
| 507 |
-
|
| 508 |
-
expert_offset = torch.cumsum(slot_counter, 0, dtype=torch.int64)
|
| 509 |
-
|
| 510 |
-
return y, combine_weights, scatter_index, expert_offset, expert_id
|
| 511 |
-
|
| 512 |
-
def combine_expert_output(self, expert_output: torch.Tensor, combine_weights: torch.Tensor, scatter_index: torch.Tensor) -> torch.Tensor:
|
| 513 |
-
"""
|
| 514 |
-
Combine expert outputs using combination weights.
|
| 515 |
-
|
| 516 |
-
Args:
|
| 517 |
-
expert_output (Tensor): Expert outputs [num_experts, capacity, dim].
|
| 518 |
-
combine_weights (Tensor): Combination weights.
|
| 519 |
-
scatter_index (Tensor): Scatter indices.
|
| 520 |
-
|
| 521 |
-
Returns:
|
| 522 |
-
Tensor: Combined output [seqlen, dim].
|
| 523 |
-
"""
|
| 524 |
-
expert_output = expert_output.reshape(-1, expert_output.shape[-1])
|
| 525 |
-
combined_output = self.combining(expert_output, combine_weights, scatter_index)
|
| 526 |
-
return combined_output
|
| 527 |
-
|
| 528 |
-
def combining(self, x, combine_weights, scatter_index):
|
| 529 |
-
"""
|
| 530 |
-
Combines and aggregates input matrix using combination weights.
|
| 531 |
-
|
| 532 |
-
Args:
|
| 533 |
-
x (Tensor): Input tensor of shape [num_experts * capacity, dim]
|
| 534 |
-
combine_weights (Tensor): Combination weights of shape [seq, 2]
|
| 535 |
-
scatter_index (Tensor): Scatter indices of shape [seq, 2]
|
| 536 |
-
|
| 537 |
-
Returns:
|
| 538 |
-
Tensor: Combined output tensor of shape [seq, dim]
|
| 539 |
-
"""
|
| 540 |
-
dim = x.shape[-1]
|
| 541 |
-
|
| 542 |
-
scatter_index = scatter_index.reshape([-1])
|
| 543 |
-
num_k = combine_weights.shape[-1]
|
| 544 |
-
|
| 545 |
-
combine_weights = combine_weights.unsqueeze(1)
|
| 546 |
-
|
| 547 |
-
x = x[scatter_index].reshape([-1, num_k, dim])
|
| 548 |
-
|
| 549 |
-
return torch.matmul(combine_weights, x).squeeze(1)
|
| 550 |
-
|
| 551 |
-
def gate_and_dispatch(self, input):
|
| 552 |
-
"""
|
| 553 |
-
Calculate gate and dispatch inputs.
|
| 554 |
-
|
| 555 |
-
Args:
|
| 556 |
-
input: Input tensor of shape [seq, dim]
|
| 557 |
-
|
| 558 |
-
Returns:
|
| 559 |
-
tuple: (dispatched_input, combine_weights, dispatch_mask,
|
| 560 |
-
scatter_index, router_loss, gate_logits, gate_prob)
|
| 561 |
-
"""
|
| 562 |
-
gate_logits, capacity, router_loss = topk_gate_func(
|
| 563 |
-
self,
|
| 564 |
-
input,
|
| 565 |
-
)
|
| 566 |
-
|
| 567 |
-
# capacity no use
|
| 568 |
-
prob = self.gate_act(gate_logits)
|
| 569 |
-
(
|
| 570 |
-
dispatched_input,
|
| 571 |
-
combine_weights_unnorm,
|
| 572 |
-
scatter_index,
|
| 573 |
-
dispatch_mask,
|
| 574 |
-
_,
|
| 575 |
-
) = self.moe_gate_dispatch(input, prob, k=self.k, capacity=capacity)
|
| 576 |
-
dispatch_mask = torch.diff(F.pad(dispatch_mask, (1, 0)))
|
| 577 |
-
|
| 578 |
-
scatter_index.detach()
|
| 579 |
-
dispatch_mask.detach()
|
| 580 |
-
|
| 581 |
-
scatter_index = scatter_index.transpose(0, 1) # [k, s] -> [s, k]
|
| 582 |
-
combine_weights = combine_weights_unnorm / torch.clamp(
|
| 583 |
-
combine_weights_unnorm.sum(dim=-1, keepdim=True), min=1e-12
|
| 584 |
-
)
|
| 585 |
-
combine_weights = combine_weights.to(dtype=dispatched_input.dtype)
|
| 586 |
-
|
| 587 |
-
return dispatched_input, combine_weights, dispatch_mask, scatter_index, router_loss, gate_logits, prob
|
| 588 |
-
|
| 589 |
-
def get_capacity(self, num_tokens, cap_factor=None):
|
| 590 |
-
"""
|
| 591 |
-
Calculate capacity based on number of tokens.
|
| 592 |
-
|
| 593 |
-
Args:
|
| 594 |
-
num_tokens: Number of input tokens
|
| 595 |
-
cap_factor: Optional capacity factor override
|
| 596 |
-
|
| 597 |
-
Returns:
|
| 598 |
-
int: Calculated capacity
|
| 599 |
-
"""
|
| 600 |
-
num_experts = self.config.moe_num_experts
|
| 601 |
-
if cap_factor is not None:
|
| 602 |
-
cap = cap_factor
|
| 603 |
-
else:
|
| 604 |
-
if self.training:
|
| 605 |
-
cap = self.config.moe_capacity[0]
|
| 606 |
-
elif num_tokens < num_experts:
|
| 607 |
-
cap = self.config.moe_capacity[2]
|
| 608 |
-
else:
|
| 609 |
-
cap = self.config.moe_capacity[1]
|
| 610 |
-
|
| 611 |
-
capacity = int(cap * num_tokens // num_experts)
|
| 612 |
-
assert capacity > 0, f"requires capacity to >= 0. cap={cap}, num_tokens={num_tokens}"
|
| 613 |
-
return capacity
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
class Ernie4_5_RMSNorm(nn.Module):
|
| 617 |
-
"""
|
| 618 |
-
Ernie Root Mean Square Layer Normalization (Ernie4_5_RMSNorm) implementation.
|
| 619 |
-
|
| 620 |
-
Ernie4_5_RMSNorm is a simplified version of LayerNorm that focuses on the root mean square of inputs,
|
| 621 |
-
omitting the mean-centering operation. This provides computational efficiency while maintaining
|
| 622 |
-
good performance.
|
| 623 |
-
|
| 624 |
-
"""
|
| 625 |
-
|
| 626 |
-
def __init__(self, config):
|
| 627 |
-
"""
|
| 628 |
-
Initialize RMSNorm layer.
|
| 629 |
-
|
| 630 |
-
Args:
|
| 631 |
-
config (ErnieConfig): Model configuration.
|
| 632 |
-
"""
|
| 633 |
-
super().__init__()
|
| 634 |
-
self.config = config
|
| 635 |
-
self.hidden_size = config.hidden_size
|
| 636 |
-
self.weight = nn.Parameter(torch.ones(config.hidden_size))
|
| 637 |
-
self.variance_epsilon = config.rms_norm_eps
|
| 638 |
-
|
| 639 |
-
def forward(self, hidden_states):
|
| 640 |
-
"""
|
| 641 |
-
Apply RMS normalization to input hidden states.
|
| 642 |
-
|
| 643 |
-
Args:
|
| 644 |
-
hidden_states (Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
|
| 645 |
-
|
| 646 |
-
Returns:
|
| 647 |
-
Tensor: Normalized output tensor of same shape as input
|
| 648 |
-
"""
|
| 649 |
-
input_dtype = hidden_states.dtype
|
| 650 |
-
hidden_states = hidden_states.to(torch.float32)
|
| 651 |
-
variance = hidden_states.pow(2).mean(dim=-1, keepdim=True)
|
| 652 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 653 |
-
|
| 654 |
-
return self.weight * hidden_states.to(input_dtype)
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
class Ernie4_5_RopeEmbedding(nn.Module):
|
| 658 |
-
def __init__(self, config: Ernie4_5_MoeConfig, device=None):
|
| 659 |
-
super().__init__()
|
| 660 |
-
# BC: "rope_type" was originally "type"
|
| 661 |
-
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 662 |
-
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 663 |
-
else:
|
| 664 |
-
self.rope_type = "default"
|
| 665 |
-
self.max_seq_len_cached = config.max_position_embeddings
|
| 666 |
-
self.original_max_seq_len = config.max_position_embeddings
|
| 667 |
-
|
| 668 |
-
self.config = config
|
| 669 |
-
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 670 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 671 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 672 |
-
self.original_inv_freq = self.inv_freq
|
| 673 |
-
|
| 674 |
-
@torch.no_grad()
|
| 675 |
-
def forward(self, x, position_ids):
|
| 676 |
-
inv_freq_expanded = self.inv_freq[None,None,:].float()
|
| 677 |
-
position_ids_expanded = position_ids[...,None].float()
|
| 678 |
-
freqs = (inv_freq_expanded.float() * position_ids_expanded.float())
|
| 679 |
-
cos = torch.cos(freqs) * self.attention_scaling
|
| 680 |
-
sin = torch.sin(freqs) * self.attention_scaling
|
| 681 |
-
return cos, sin
|
| 682 |
-
# return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
class Ernie4_5_DecoderLayer(nn.Module):
|
| 686 |
-
"""A single transformer decoder layer in ERNIE-MoE model.
|
| 687 |
-
|
| 688 |
-
Contains self-attention and feed-forward components with optional MoE (Mixture of Experts)
|
| 689 |
-
support, residual connections, and layer normalization.
|
| 690 |
-
"""
|
| 691 |
-
|
| 692 |
-
def __init__(self, config, layer_idx):
|
| 693 |
-
"""Initialize the decoder layer.
|
| 694 |
-
|
| 695 |
-
Args:
|
| 696 |
-
config (ErnieMoEConfig): Model configuration.
|
| 697 |
-
layer_idx (int): Index of this layer in the transformer stack
|
| 698 |
-
"""
|
| 699 |
-
super().__init__()
|
| 700 |
-
self.hidden_size = config.hidden_size
|
| 701 |
-
self.layer_idx = layer_idx
|
| 702 |
-
self.config = config
|
| 703 |
-
self.use_moe = config.use_moe
|
| 704 |
-
self.self_attn = Ernie4_5_Attention(config, layer_idx)
|
| 705 |
-
|
| 706 |
-
moe_layer_start_index = (
|
| 707 |
-
min(config.moe_layer_start_index)
|
| 708 |
-
if isinstance(config.moe_layer_start_index, (tuple, list))
|
| 709 |
-
else config.moe_layer_start_index
|
| 710 |
-
)
|
| 711 |
-
moe_layer_end_index = (
|
| 712 |
-
max(config.moe_layer_end_index)
|
| 713 |
-
if isinstance(config.moe_layer_end_index, (tuple, list))
|
| 714 |
-
else config.moe_layer_end_index
|
| 715 |
-
)
|
| 716 |
-
|
| 717 |
-
if (
|
| 718 |
-
self.use_moe
|
| 719 |
-
and ((layer_idx + 1) % config.moe_layer_interval == 0)
|
| 720 |
-
and layer_idx >= moe_layer_start_index
|
| 721 |
-
and layer_idx <= moe_layer_end_index
|
| 722 |
-
):
|
| 723 |
-
self.mlp = Ernie4_5_MoeMLP(config)
|
| 724 |
-
else:
|
| 725 |
-
self.mlp = Ernie4_5_MLP(config)
|
| 726 |
-
|
| 727 |
-
self.input_layernorm = Ernie4_5_RMSNorm(config)
|
| 728 |
-
self.post_attention_layernorm = Ernie4_5_RMSNorm(config)
|
| 729 |
-
|
| 730 |
-
self.residual_add1 = Ernie4_5_ResidualWithDropout(config.hidden_dropout_prob)
|
| 731 |
-
self.residual_add2 = Ernie4_5_ResidualWithDropout(config.hidden_dropout_prob)
|
| 732 |
-
|
| 733 |
-
def forward(
|
| 734 |
-
self,
|
| 735 |
-
hidden_states: torch.Tensor,
|
| 736 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 737 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 738 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 739 |
-
output_attentions: Optional[bool] = False,
|
| 740 |
-
use_cache: Optional[bool] = False,
|
| 741 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 742 |
-
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 743 |
-
output_router_loss: bool = True,
|
| 744 |
-
output_gate_logits: bool = True,
|
| 745 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
| 746 |
-
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 747 |
-
"""Forward pass through the decoder layer.
|
| 748 |
-
|
| 749 |
-
Args:
|
| 750 |
-
hidden_states (torch.Tensor): Input tensor [batch_size, seq_len, hidden_size]
|
| 751 |
-
attention_mask (Optional[torch.Tensor]): Attention mask tensor
|
| 752 |
-
position_ids (Optional[torch.Tensor]): Position indices for rotary embeddings
|
| 753 |
-
past_key_value (Optional[Tuple[torch.Tensor]]): Cached key/value states
|
| 754 |
-
output_attentions (Optional[bool]): Whether to return attention weights
|
| 755 |
-
use_cache (Optional[bool]): Whether to cache key/value states
|
| 756 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 757 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
| 758 |
-
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 759 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 760 |
-
with `head_dim` being the embedding dimension of each attention head.
|
| 761 |
-
output_router_loss (bool): Whether to return MoE router loss
|
| 762 |
-
output_gate_logits (bool): Whether to return MoE gate logits
|
| 763 |
-
|
| 764 |
-
Returns:
|
| 765 |
-
Union: Various output combinations depending on arguments:
|
| 766 |
-
- Base case: Hidden states tensor
|
| 767 |
-
- With attention: Tuple of (hidden_states, attention_weights)
|
| 768 |
-
- With router loss: May include gate logits in output tuple
|
| 769 |
-
- With MoE gate logits: May include gate logits in output tuple
|
| 770 |
-
"""
|
| 771 |
-
residual = hidden_states
|
| 772 |
-
|
| 773 |
-
hidden_states = self.input_layernorm(hidden_states)
|
| 774 |
-
|
| 775 |
-
# Self Attention
|
| 776 |
-
hidden_states, self_attn_weights = self.self_attn(
|
| 777 |
-
hidden_states=hidden_states,
|
| 778 |
-
attention_mask=attention_mask,
|
| 779 |
-
past_key_value=past_key_value,
|
| 780 |
-
position_ids=position_ids,
|
| 781 |
-
use_cache=use_cache,
|
| 782 |
-
cache_position=cache_position,
|
| 783 |
-
position_embeddings=position_embeddings,
|
| 784 |
-
**kwargs,
|
| 785 |
-
)
|
| 786 |
-
|
| 787 |
-
hidden_states = self.residual_add1(hidden_states, residual)
|
| 788 |
-
|
| 789 |
-
# Fully Connected
|
| 790 |
-
residual = hidden_states
|
| 791 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 792 |
-
|
| 793 |
-
router_loss = None
|
| 794 |
-
gate_logits = None
|
| 795 |
-
|
| 796 |
-
if isinstance(self.mlp, Ernie4_5_MoeMLP):
|
| 797 |
-
hidden_states, _, router_loss, gate_logits = self.mlp(hidden_states)
|
| 798 |
-
else:
|
| 799 |
-
hidden_states = self.mlp(hidden_states)
|
| 800 |
-
|
| 801 |
-
hidden_states = self.residual_add2(hidden_states, residual)
|
| 802 |
-
|
| 803 |
-
outputs = (hidden_states,)
|
| 804 |
-
|
| 805 |
-
if output_attentions:
|
| 806 |
-
outputs += (self_attn_weights,)
|
| 807 |
-
|
| 808 |
-
if output_router_loss:
|
| 809 |
-
outputs += (router_loss,)
|
| 810 |
-
|
| 811 |
-
if output_gate_logits:
|
| 812 |
-
outputs += (gate_logits,)
|
| 813 |
-
|
| 814 |
-
return outputs
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
@auto_docstring
|
| 818 |
-
class Ernie4_5_PretrainedModel(PreTrainedModel):
|
| 819 |
-
"""Base class for ERNIE pretrained models."""
|
| 820 |
-
config_class = Ernie4_5_MoeConfig
|
| 821 |
-
base_model_prefix = "model"
|
| 822 |
-
supports_gradient_checkpointing = True
|
| 823 |
-
_no_split_modules = ["Ernie4_5_DecoderLayer"]
|
| 824 |
-
_skip_keys_device_placement = ["past_key_values"]
|
| 825 |
-
_supports_flash_attn_2 = True
|
| 826 |
-
_supports_sdpa = True
|
| 827 |
-
_supports_flex_attn = True
|
| 828 |
-
_supports_cache_class = True
|
| 829 |
-
_supports_quantized_cache = True
|
| 830 |
-
_supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
def subbatch(f, arg_idx, axis, bs, out_idx, same_arg_idx={}):
|
| 834 |
-
"""
|
| 835 |
-
Converts a function to one that applies to subbatch of an input dimension.
|
| 836 |
-
Useful for processing large tensors in smaller chunks to reduce memory usage.
|
| 837 |
-
|
| 838 |
-
Args:
|
| 839 |
-
f (Callable): Function to be subbatched.
|
| 840 |
-
arg_idx ([int]): Indices of the inputs to be subbatched.
|
| 841 |
-
axis ([int]): Indices of the dimensions to be subbatched for each input.
|
| 842 |
-
bs (int): Subbatch size.
|
| 843 |
-
out_idx (int): Dimension to concatenate outputs along.
|
| 844 |
-
same_arg_idx (dict): Mapping of argument indices that share the same tensor.
|
| 845 |
-
|
| 846 |
-
Returns:
|
| 847 |
-
Callable: New function that processes inputs in subbatches.
|
| 848 |
-
"""
|
| 849 |
-
|
| 850 |
-
@functools.wraps(f)
|
| 851 |
-
def wrapper(*args, **kwargs):
|
| 852 |
-
|
| 853 |
-
assert len(arg_idx) == len(axis), "Number of batching args and number of batching dims should match."
|
| 854 |
-
|
| 855 |
-
inps = [args[i] for i in arg_idx]
|
| 856 |
-
axis_width = [inp.shape[d] for inp, d in zip(inps, axis)]
|
| 857 |
-
assert len(set(axis_width)) == 1, "Batch sizes should be kept equal."
|
| 858 |
-
|
| 859 |
-
inp_axis = {idx: d for idx, d in zip(arg_idx, axis)}
|
| 860 |
-
|
| 861 |
-
axis_width = axis_width[0]
|
| 862 |
-
if axis_width < bs:
|
| 863 |
-
return f(*args, **kwargs)
|
| 864 |
-
|
| 865 |
-
outs = []
|
| 866 |
-
for slice_at in range(0, axis_width, bs):
|
| 867 |
-
_args = []
|
| 868 |
-
for i, inp in enumerate(args):
|
| 869 |
-
if i in same_arg_idx:
|
| 870 |
-
assert (
|
| 871 |
-
i > same_arg_idx[i]
|
| 872 |
-
), f"expect i > same_arg_idx[i], but got i: {i} and same_arg_idx[i]: {same_arg_idx[i]}"
|
| 873 |
-
_args.append(_args[same_arg_idx[i]])
|
| 874 |
-
elif i in arg_idx:
|
| 875 |
-
d = inp_axis[i]
|
| 876 |
-
start = slice_at
|
| 877 |
-
end = min(inp.shape[d], slice_at + bs)
|
| 878 |
-
# Build slice for all dims, only slice along axis d
|
| 879 |
-
slices = [slice(None)] * inp.ndim
|
| 880 |
-
slices[d] = slice(start, end)
|
| 881 |
-
_args.append(inp[tuple(slices)])
|
| 882 |
-
else:
|
| 883 |
-
_args.append(inp)
|
| 884 |
-
|
| 885 |
-
out = f(*_args, **kwargs)
|
| 886 |
-
outs.append(out)
|
| 887 |
-
|
| 888 |
-
return torch.cat(outs, dim=out_idx)
|
| 889 |
-
|
| 890 |
-
return wrapper
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
class ErniePretrainingCriterion(nn.Module):
|
| 894 |
-
"""Criterion for ERNIE pretraining task."""
|
| 895 |
-
|
| 896 |
-
def __init__(self, config, return_tuple=True):
|
| 897 |
-
"""Initialize the pretraining criterion.
|
| 898 |
-
|
| 899 |
-
Args:
|
| 900 |
-
config (ErnieConfig): Model configuration.
|
| 901 |
-
return_tuple (bool): Whether to return loss as tuple (loss, loss_sum). Defaults to True.
|
| 902 |
-
"""
|
| 903 |
-
super().__init__()
|
| 904 |
-
self.ignored_index = getattr(config, "ignored_index", -100)
|
| 905 |
-
self.config = config
|
| 906 |
-
self.return_tuple = return_tuple
|
| 907 |
-
|
| 908 |
-
self.loss_func = nn.CrossEntropyLoss(reduction="none")
|
| 909 |
-
|
| 910 |
-
def forward(self, prediction_scores, masked_lm_labels, loss_mask, router_loss=None, mtp_logits=None):
|
| 911 |
-
"""Compute the combined pretraining loss.
|
| 912 |
-
|
| 913 |
-
Args:
|
| 914 |
-
prediction_scores: Prediction scores tensor, [batch_size, seq_len, vocab_size]
|
| 915 |
-
masked_lm_labels: Target labels tensor [batch_size, seq_len]
|
| 916 |
-
loss_mask: Optional mask for valid tokens
|
| 917 |
-
router_loss: Optional MoE router loss tensor
|
| 918 |
-
|
| 919 |
-
Returns:
|
| 920 |
-
Union:
|
| 921 |
-
- If return_tuple=True: Tuple of (combined_loss, mlm_loss_sum)
|
| 922 |
-
- If return_tuple=False: Combined loss tensor
|
| 923 |
-
"""
|
| 924 |
-
if self.config.num_nextn_predict_layers > 0 and self.training:
|
| 925 |
-
masked_lm_labels_ori = masked_lm_labels
|
| 926 |
-
masked_lm_labels = masked_lm_labels[:, : -self.config.num_nextn_predict_layers]
|
| 927 |
-
loss_mask = loss_mask[:, : -self.config.num_nextn_predict_layers]
|
| 928 |
-
seq_length = masked_lm_labels.shape[1]
|
| 929 |
-
|
| 930 |
-
res = self.forward_impl(prediction_scores, masked_lm_labels, loss_mask)
|
| 931 |
-
|
| 932 |
-
if self.config.num_nextn_predict_layers > 0 and self.training:
|
| 933 |
-
mtp_loss_res = []
|
| 934 |
-
for depth in range(self.config.num_nextn_predict_layers):
|
| 935 |
-
prediction_scores_cur_depth = mtp_logits[depth]
|
| 936 |
-
masked_lm_labels_cur_depth = masked_lm_labels_ori[:, (depth + 1) : (depth + 1 + seq_length)]
|
| 937 |
-
res_cur_depth = super().forward(
|
| 938 |
-
prediction_scores_cur_depth,
|
| 939 |
-
masked_lm_labels_cur_depth,
|
| 940 |
-
)
|
| 941 |
-
mtp_loss_res.append(res_cur_depth)
|
| 942 |
-
|
| 943 |
-
def add_loss(main_loss, loss):
|
| 944 |
-
return main_loss + loss - loss.detach()
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
if self.return_tuple:
|
| 948 |
-
loss, loss_sum = res
|
| 949 |
-
if self.config.num_nextn_predict_layers > 0 and self.training:
|
| 950 |
-
loss = add_loss(
|
| 951 |
-
loss, self.config.multi_token_pred_lambda * sum([x[0] for x in mtp_loss_res]) / len(mtp_loss_res)
|
| 952 |
-
)
|
| 953 |
-
loss_sum = loss_sum + self.config.multi_token_pred_lambda * sum(
|
| 954 |
-
[x[1].detach() for x in mtp_loss_res]
|
| 955 |
-
) / len(mtp_loss_res)
|
| 956 |
-
else:
|
| 957 |
-
loss, loss_sum = res, None
|
| 958 |
-
if self.config.num_nextn_predict_layers > 0 and self.training:
|
| 959 |
-
loss = add_loss(
|
| 960 |
-
loss, self.config.multi_token_pred_lambda * sum([x[0] for x in mtp_loss_res]) / len(mtp_loss_res)
|
| 961 |
-
)
|
| 962 |
-
|
| 963 |
-
if router_loss is not None and isinstance(router_loss, torch.Tensor):
|
| 964 |
-
loss = loss + router_loss - router_loss.detach()
|
| 965 |
-
|
| 966 |
-
return loss, loss_sum
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
def loss_impl(self, prediction_scores: torch.Tensor, masked_lm_labels: torch.Tensor) -> torch.Tensor:
|
| 970 |
-
"""
|
| 971 |
-
Core loss computation without reduction (but per-token).
|
| 972 |
-
|
| 973 |
-
Args:
|
| 974 |
-
prediction_scores (torch.Tensor): Logits tensor [batch_size, seq_len, vocab_size].
|
| 975 |
-
masked_lm_labels (torch.Tensor): Target labels tensor [batch_size, seq_len].
|
| 976 |
-
|
| 977 |
-
Returns:
|
| 978 |
-
torch.Tensor: Unreduced loss tensor of shape [batch_size, seq_len].
|
| 979 |
-
Losses are calculated in float32.
|
| 980 |
-
"""
|
| 981 |
-
scores_float32 = prediction_scores.to(torch.float32)
|
| 982 |
-
# prediction_scores: [batch_size, seq_len, vocab_size]
|
| 983 |
-
# masked_lm_labels: [batch_size, seq_len]
|
| 984 |
-
# Transpose prediction_scores to [batch_size, vocab_size, seq_len]
|
| 985 |
-
unreduced_loss = self.loss_func(
|
| 986 |
-
scores_float32.transpose(1, 2), # Shape: [batch_size, vocab_size, seq_len]
|
| 987 |
-
masked_lm_labels.long() # Shape: [batch_size, seq_len], ensure long type
|
| 988 |
-
)
|
| 989 |
-
# unreduced_loss will be of shape [batch_size, seq_len] and dtype float32
|
| 990 |
-
return unreduced_loss
|
| 991 |
-
|
| 992 |
-
def forward_impl(self, prediction_scores, masked_lm_labels, loss_mask=None):
|
| 993 |
-
prediction_scores_dims = len(prediction_scores.shape)
|
| 994 |
-
|
| 995 |
-
loss_subbatch_seqlen_config_key = "loss_subbatch_seqlen"
|
| 996 |
-
default_loss_subbatch_seqlen = 32768
|
| 997 |
-
|
| 998 |
-
current_loss_subbatch_seqlen = getattr(self.config, loss_subbatch_seqlen_config_key, default_loss_subbatch_seqlen)
|
| 999 |
-
|
| 1000 |
-
if prediction_scores_dims == 2 and prediction_scores.shape[0] > current_loss_subbatch_seqlen:
|
| 1001 |
-
sb_loss_func = subbatch(
|
| 1002 |
-
self.loss_impl, [0, 1], [0, 0], current_loss_subbatch_seqlen, 0
|
| 1003 |
-
)
|
| 1004 |
-
masked_lm_loss = sb_loss_func(prediction_scores, masked_lm_labels)
|
| 1005 |
-
elif prediction_scores_dims == 3 and prediction_scores.shape[1] > current_loss_subbatch_seqlen:
|
| 1006 |
-
sb_loss_func = subbatch(
|
| 1007 |
-
self.loss_impl, [0, 1], [1, 1], current_loss_subbatch_seqlen, 1
|
| 1008 |
-
)
|
| 1009 |
-
masked_lm_loss = sb_loss_func(prediction_scores, masked_lm_labels)
|
| 1010 |
-
else:
|
| 1011 |
-
masked_lm_loss = self.loss_impl(prediction_scores, masked_lm_labels)
|
| 1012 |
-
|
| 1013 |
-
if loss_mask is None:
|
| 1014 |
-
loss_mask = masked_lm_labels != self.ignored_index
|
| 1015 |
-
|
| 1016 |
-
loss_mask = loss_mask.reshape(-1).to(torch.float32)
|
| 1017 |
-
|
| 1018 |
-
masked_lm_loss = torch.sum(masked_lm_loss.to(torch.float32).reshape(-1) * loss_mask)
|
| 1019 |
-
|
| 1020 |
-
# The division will be in float32
|
| 1021 |
-
loss = masked_lm_loss / loss_mask.sum()
|
| 1022 |
-
|
| 1023 |
-
loss_sum = masked_lm_loss.sum().detach()
|
| 1024 |
-
|
| 1025 |
-
if not self.return_tuple:
|
| 1026 |
-
if self.training:
|
| 1027 |
-
return loss
|
| 1028 |
-
return loss_sum
|
| 1029 |
-
return loss, loss_sum
|
| 1030 |
-
|
| 1031 |
-
@auto_docstring
|
| 1032 |
-
class Ernie4_5_Model(Ernie4_5_PretrainedModel):
|
| 1033 |
-
"""The core ERNIE transformer model with MoE (Mixture of Experts) support."""
|
| 1034 |
-
_keep_in_fp32_modules = ['gate']
|
| 1035 |
-
def __init__(self, config: Ernie4_5_MoeConfig):
|
| 1036 |
-
"""Initialize the ERNIE model architecture."""
|
| 1037 |
-
super().__init__(config)
|
| 1038 |
-
self.padding_idx = config.pad_token_id
|
| 1039 |
-
self.vocab_size = config.vocab_size
|
| 1040 |
-
self.hidden_size = config.hidden_size
|
| 1041 |
-
self.config = config
|
| 1042 |
-
|
| 1043 |
-
self.embed_tokens = nn.Embedding(
|
| 1044 |
-
self.vocab_size,
|
| 1045 |
-
self.hidden_size,
|
| 1046 |
-
)
|
| 1047 |
-
|
| 1048 |
-
self.layers = nn.ModuleList(
|
| 1049 |
-
[
|
| 1050 |
-
Ernie4_5_DecoderLayer(config, i)
|
| 1051 |
-
for i in range(config.num_hidden_layers)
|
| 1052 |
-
]
|
| 1053 |
-
)
|
| 1054 |
-
self.norm = Ernie4_5_RMSNorm(config)
|
| 1055 |
-
self.rotary_emb = Ernie4_5_RopeEmbedding(config=config)
|
| 1056 |
-
|
| 1057 |
-
self.gradient_checkpointing = False
|
| 1058 |
-
|
| 1059 |
-
if config.num_nextn_predict_layers > 0 and self.training:
|
| 1060 |
-
self.mtp_block = nn.ModuleList(
|
| 1061 |
-
[Ernie4_5_DecoderLayer(config, layer_idx) for layer_idx in range(config.num_nextn_predict_layers)]
|
| 1062 |
-
)
|
| 1063 |
-
self.mtp_emb_norm = nn.ModuleList(
|
| 1064 |
-
[Ernie4_5_RMSNorm(config) for _ in range(config.num_nextn_predict_layers)]
|
| 1065 |
-
)
|
| 1066 |
-
self.mtp_hidden_norm = nn.ModuleList(
|
| 1067 |
-
[Ernie4_5_RMSNorm(config) for _ in range(config.num_nextn_predict_layers)]
|
| 1068 |
-
)
|
| 1069 |
-
self.mtp_linear_proj = nn.ModuleList(
|
| 1070 |
-
[nn.Linear(config.hidden_size * 2, config.hidden_size, bias=config.use_bias) for _ in range(config.num_nextn_predict_layers)]
|
| 1071 |
-
)
|
| 1072 |
-
|
| 1073 |
-
self.post_init()
|
| 1074 |
-
|
| 1075 |
-
def get_input_embeddings(self):
|
| 1076 |
-
"""Get the input embedding layer."""
|
| 1077 |
-
return self.embed_tokens
|
| 1078 |
-
|
| 1079 |
-
def set_input_embeddings(self, value):
|
| 1080 |
-
"""Set new input embeddings."""
|
| 1081 |
-
self.embed_tokens = value
|
| 1082 |
-
|
| 1083 |
-
def forward(
|
| 1084 |
-
self,
|
| 1085 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 1086 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1087 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 1088 |
-
past_key_values: Optional[Cache] = None,
|
| 1089 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1090 |
-
use_cache: Optional[bool] = None,
|
| 1091 |
-
output_attentions: Optional[bool] = None,
|
| 1092 |
-
output_hidden_states: Optional[bool] = None,
|
| 1093 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 1094 |
-
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 1095 |
-
):
|
| 1096 |
-
"""Forward pass through the ERNIE model."""
|
| 1097 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1098 |
-
output_hidden_states = (
|
| 1099 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1100 |
-
)
|
| 1101 |
-
|
| 1102 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1103 |
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1104 |
-
|
| 1105 |
-
if self.gradient_checkpointing and self.training:
|
| 1106 |
-
if use_cache:
|
| 1107 |
-
logger.warning_once(
|
| 1108 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1109 |
-
)
|
| 1110 |
-
use_cache = False
|
| 1111 |
-
|
| 1112 |
-
if use_cache and past_key_values is None:
|
| 1113 |
-
past_key_values = DynamicCache()
|
| 1114 |
-
|
| 1115 |
-
if inputs_embeds is None:
|
| 1116 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 1117 |
-
|
| 1118 |
-
inputs_embeds = inputs_embeds.to(self.embed_tokens.weight.dtype)
|
| 1119 |
-
|
| 1120 |
-
if cache_position is None:
|
| 1121 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1122 |
-
cache_position = torch.arange(
|
| 1123 |
-
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 1124 |
-
)
|
| 1125 |
-
if position_ids is None:
|
| 1126 |
-
position_ids = cache_position.unsqueeze(0)
|
| 1127 |
-
|
| 1128 |
-
seq_length = inputs_embeds.size(1)
|
| 1129 |
-
if self.config.num_nextn_predict_layers > 0 and self.training:
|
| 1130 |
-
seq_length -= self.config.num_nextn_predict_layers
|
| 1131 |
-
seq_length_with_past = seq_length
|
| 1132 |
-
if position_ids is not None:
|
| 1133 |
-
position_ids = position_ids[:, :seq_length]
|
| 1134 |
-
inputs_embeds_extra = inputs_embeds[:, -self.config.num_nextn_predict_layers :, :]
|
| 1135 |
-
inputs_embeds = inputs_embeds[:, : -self.config.num_nextn_predict_layers, :]
|
| 1136 |
-
inputs_embeds_ori = inputs_embeds
|
| 1137 |
-
|
| 1138 |
-
causal_mask = self._update_causal_mask(
|
| 1139 |
-
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 1140 |
-
)
|
| 1141 |
-
|
| 1142 |
-
hidden_states = inputs_embeds
|
| 1143 |
-
|
| 1144 |
-
# create position embeddings to be shared across the decoder layers
|
| 1145 |
-
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 1146 |
-
|
| 1147 |
-
# decoder layers
|
| 1148 |
-
all_hidden_states = () if output_hidden_states else None
|
| 1149 |
-
all_self_attns = () if output_attentions else None
|
| 1150 |
-
all_router_loss = torch.tensor(0.0, device=inputs_embeds.device) if self.config.use_moe else None
|
| 1151 |
-
all_gate_logits = ()
|
| 1152 |
-
|
| 1153 |
-
for decoder_layer in self.layers:
|
| 1154 |
-
if output_hidden_states:
|
| 1155 |
-
all_hidden_states += (hidden_states,)
|
| 1156 |
-
|
| 1157 |
-
if self.gradient_checkpointing and self.training:
|
| 1158 |
-
layer_outputs = self._gradient_checkpointing_func(
|
| 1159 |
-
partial(decoder_layer.__call__, **flash_attn_kwargs),
|
| 1160 |
-
hidden_states,
|
| 1161 |
-
causal_mask,
|
| 1162 |
-
position_ids,
|
| 1163 |
-
past_key_values,
|
| 1164 |
-
output_attentions,
|
| 1165 |
-
use_cache,
|
| 1166 |
-
cache_position,
|
| 1167 |
-
position_embeddings,
|
| 1168 |
-
)
|
| 1169 |
-
else:
|
| 1170 |
-
layer_outputs = decoder_layer(
|
| 1171 |
-
hidden_states,
|
| 1172 |
-
causal_mask,
|
| 1173 |
-
position_ids,
|
| 1174 |
-
past_key_values,
|
| 1175 |
-
output_attentions,
|
| 1176 |
-
use_cache,
|
| 1177 |
-
cache_position,
|
| 1178 |
-
position_embeddings,
|
| 1179 |
-
**flash_attn_kwargs,
|
| 1180 |
-
)
|
| 1181 |
-
|
| 1182 |
-
hidden_states = layer_outputs[0]
|
| 1183 |
-
|
| 1184 |
-
if output_attentions:
|
| 1185 |
-
all_self_attns += (layer_outputs[1],)
|
| 1186 |
-
|
| 1187 |
-
if self.config.use_moe:
|
| 1188 |
-
layer_outputs, gate_logits = layer_outputs[:-1], layer_outputs[-1]
|
| 1189 |
-
all_gate_logits = all_gate_logits + (gate_logits,)
|
| 1190 |
-
|
| 1191 |
-
mtp_outputs = []
|
| 1192 |
-
if self.config.num_nextn_predict_layers > 0 and self.training:
|
| 1193 |
-
mtp_outputs.append(hidden_states)
|
| 1194 |
-
for depth in range(self.config.num_nextn_predict_layers):
|
| 1195 |
-
inputs_embeds_cur_depth = torch.concat(
|
| 1196 |
-
[inputs_embeds_ori[:, (depth + 1) :, :], inputs_embeds_extra[:, : (depth + 1), :]], axis=1
|
| 1197 |
-
)
|
| 1198 |
-
inputs_embeds_cur_depth_norm = self.mtp_emb_norm[depth](inputs_embeds_cur_depth)
|
| 1199 |
-
hidden_states_norm = self.mtp_hidden_norm[depth](hidden_states)
|
| 1200 |
-
|
| 1201 |
-
inputs_embeds_cur_depth = self.mtp_linear_proj[depth](
|
| 1202 |
-
torch.concat([inputs_embeds_cur_depth_norm, hidden_states_norm], axis=-1)
|
| 1203 |
-
)
|
| 1204 |
-
|
| 1205 |
-
decoder_layer = self.mtp_block[depth]
|
| 1206 |
-
layer_outputs = decoder_layer(
|
| 1207 |
-
inputs_embeds_cur_depth,
|
| 1208 |
-
causal_mask,
|
| 1209 |
-
position_ids,
|
| 1210 |
-
past_key_values,
|
| 1211 |
-
output_attentions,
|
| 1212 |
-
use_cache,
|
| 1213 |
-
cache_position,
|
| 1214 |
-
position_embeddings,
|
| 1215 |
-
**flash_attn_kwargs,
|
| 1216 |
-
)
|
| 1217 |
-
if isinstance(layer_outputs, (tuple, list)):
|
| 1218 |
-
hidden_states = layer_outputs[0]
|
| 1219 |
-
else:
|
| 1220 |
-
hidden_states = layer_outputs
|
| 1221 |
-
|
| 1222 |
-
if self.config.use_moe:
|
| 1223 |
-
layer_outputs, gate_logits = layer_outputs[:-1], layer_outputs[-1]
|
| 1224 |
-
all_gate_logits = all_gate_logits + (gate_logits,)
|
| 1225 |
-
|
| 1226 |
-
mtp_outputs.append(hidden_states)
|
| 1227 |
-
mtp_outputs = [self.norm(hidden_states) for depth, hidden_states in enumerate(mtp_outputs)]
|
| 1228 |
-
hidden_states, mtp_outputs = mtp_outputs[0], mtp_outputs[1:]
|
| 1229 |
-
else:
|
| 1230 |
-
hidden_states = self.norm(hidden_states)
|
| 1231 |
-
|
| 1232 |
-
# add hidden states from the last decoder layer
|
| 1233 |
-
if output_hidden_states:
|
| 1234 |
-
all_hidden_states += (hidden_states,)
|
| 1235 |
-
|
| 1236 |
-
# assert all_router_loss is None, f'moe not support `return-dict`'
|
| 1237 |
-
return Erine4_5_MoeModelOutputWithPast(
|
| 1238 |
-
last_hidden_state=hidden_states,
|
| 1239 |
-
past_key_values=past_key_values,
|
| 1240 |
-
hidden_states=all_hidden_states,
|
| 1241 |
-
attentions=all_self_attns,
|
| 1242 |
-
router_loss=all_router_loss,
|
| 1243 |
-
gate_logits=all_gate_logits,
|
| 1244 |
-
mtp_outputs=mtp_outputs,
|
| 1245 |
-
)
|
| 1246 |
-
|
| 1247 |
-
def _update_causal_mask(
|
| 1248 |
-
self,
|
| 1249 |
-
attention_mask: Union[torch.Tensor, "BlockMask"],
|
| 1250 |
-
input_tensor: torch.Tensor,
|
| 1251 |
-
cache_position: torch.Tensor,
|
| 1252 |
-
past_key_values: Cache,
|
| 1253 |
-
output_attentions: bool = False,
|
| 1254 |
-
):
|
| 1255 |
-
if self.config._attn_implementation == "flash_attention_2":
|
| 1256 |
-
if attention_mask is not None and past_key_values is not None:
|
| 1257 |
-
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
| 1258 |
-
if is_padding_right:
|
| 1259 |
-
raise ValueError(
|
| 1260 |
-
"You are attempting to perform batched generation with padding_side='right'"
|
| 1261 |
-
" this may lead to unexpected behaviour for Flash Attention version of Ernie4_5. Make sure to "
|
| 1262 |
-
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 1263 |
-
)
|
| 1264 |
-
if attention_mask is not None and 0.0 in attention_mask:
|
| 1265 |
-
return attention_mask
|
| 1266 |
-
return None
|
| 1267 |
-
if self.config._attn_implementation == "flex_attention":
|
| 1268 |
-
if isinstance(attention_mask, torch.Tensor):
|
| 1269 |
-
attention_mask = make_flex_block_causal_mask(attention_mask)
|
| 1270 |
-
return attention_mask
|
| 1271 |
-
|
| 1272 |
-
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1273 |
-
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1274 |
-
# to infer the attention mask.
|
| 1275 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1276 |
-
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1277 |
-
|
| 1278 |
-
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1279 |
-
if (
|
| 1280 |
-
self.config._attn_implementation == "sdpa"
|
| 1281 |
-
and not using_static_cache
|
| 1282 |
-
and not output_attentions
|
| 1283 |
-
):
|
| 1284 |
-
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1285 |
-
attention_mask,
|
| 1286 |
-
inputs_embeds=input_tensor,
|
| 1287 |
-
past_key_values_length=past_seen_tokens,
|
| 1288 |
-
is_training=self.training,
|
| 1289 |
-
):
|
| 1290 |
-
return None
|
| 1291 |
-
|
| 1292 |
-
dtype = input_tensor.dtype
|
| 1293 |
-
min_dtype = torch.finfo(dtype).min
|
| 1294 |
-
sequence_length = input_tensor.shape[1]
|
| 1295 |
-
# StaticCache
|
| 1296 |
-
if using_static_cache:
|
| 1297 |
-
target_length = past_key_values.get_max_cache_shape()
|
| 1298 |
-
# DynamicCache or no cache
|
| 1299 |
-
else:
|
| 1300 |
-
target_length = (
|
| 1301 |
-
attention_mask.shape[-1]
|
| 1302 |
-
if isinstance(attention_mask, torch.Tensor)
|
| 1303 |
-
else past_seen_tokens + sequence_length + 1
|
| 1304 |
-
)
|
| 1305 |
-
|
| 1306 |
-
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1307 |
-
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1308 |
-
attention_mask,
|
| 1309 |
-
sequence_length=sequence_length,
|
| 1310 |
-
target_length=target_length,
|
| 1311 |
-
dtype=dtype,
|
| 1312 |
-
cache_position=cache_position,
|
| 1313 |
-
batch_size=input_tensor.shape[0],
|
| 1314 |
-
config=self.config,
|
| 1315 |
-
past_key_values=past_key_values,
|
| 1316 |
-
)
|
| 1317 |
-
|
| 1318 |
-
if (
|
| 1319 |
-
self.config._attn_implementation == "sdpa"
|
| 1320 |
-
and attention_mask is not None
|
| 1321 |
-
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
| 1322 |
-
and not output_attentions
|
| 1323 |
-
):
|
| 1324 |
-
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1325 |
-
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1326 |
-
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1327 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 1328 |
-
|
| 1329 |
-
return causal_mask
|
| 1330 |
-
|
| 1331 |
-
@staticmethod
|
| 1332 |
-
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1333 |
-
attention_mask: torch.Tensor,
|
| 1334 |
-
sequence_length: int,
|
| 1335 |
-
target_length: int,
|
| 1336 |
-
dtype: torch.dtype,
|
| 1337 |
-
cache_position: torch.Tensor,
|
| 1338 |
-
batch_size: int,
|
| 1339 |
-
config: Ernie4_5_MoeConfig,
|
| 1340 |
-
past_key_values: Cache,
|
| 1341 |
-
):
|
| 1342 |
-
"""
|
| 1343 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1344 |
-
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1345 |
-
|
| 1346 |
-
Args:
|
| 1347 |
-
attention_mask (`torch.Tensor`):
|
| 1348 |
-
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 1349 |
-
sequence_length (`int`):
|
| 1350 |
-
The sequence length being processed.
|
| 1351 |
-
target_length (`int`):
|
| 1352 |
-
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1353 |
-
dtype (`torch.dtype`):
|
| 1354 |
-
The dtype to use for the 4D attention mask.
|
| 1355 |
-
cache_position (`torch.Tensor`):
|
| 1356 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1357 |
-
batch_size (`torch.Tensor`):
|
| 1358 |
-
Batch size.
|
| 1359 |
-
config (`Ernie4_5_MoeConfig`):
|
| 1360 |
-
The model's configuration class
|
| 1361 |
-
past_key_values (`Cache`):
|
| 1362 |
-
The cache class that is being used currently to generate
|
| 1363 |
-
"""
|
| 1364 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1365 |
-
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1366 |
-
causal_mask = attention_mask
|
| 1367 |
-
else:
|
| 1368 |
-
min_dtype = torch.finfo(dtype).min
|
| 1369 |
-
causal_mask = torch.full(
|
| 1370 |
-
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
| 1371 |
-
)
|
| 1372 |
-
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
|
| 1373 |
-
-1, 1
|
| 1374 |
-
)
|
| 1375 |
-
text_config = config.get_text_config()
|
| 1376 |
-
causal_mask *= diagonal_attend_mask
|
| 1377 |
-
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1378 |
-
if attention_mask is not None:
|
| 1379 |
-
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1380 |
-
if attention_mask.shape[-1] > target_length:
|
| 1381 |
-
attention_mask = attention_mask[:, :target_length]
|
| 1382 |
-
mask_length = attention_mask.shape[-1]
|
| 1383 |
-
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 1384 |
-
causal_mask.device
|
| 1385 |
-
)
|
| 1386 |
-
padding_mask = padding_mask == 0
|
| 1387 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1388 |
-
padding_mask, min_dtype
|
| 1389 |
-
)
|
| 1390 |
-
return causal_mask
|
| 1391 |
-
|
| 1392 |
-
@auto_docstring
|
| 1393 |
-
class Ernie4_5_MoeForCausalLM(Ernie4_5_PretrainedModel,GenerationMixin):
|
| 1394 |
-
"""ERNIE Mixture of Experts (MoE) model for causal language modeling."""
|
| 1395 |
-
|
| 1396 |
-
_tied_weights_keys = ["lm_head.weight"]
|
| 1397 |
-
_tp_plan = {"lm_head": "colwise_rep"}
|
| 1398 |
-
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 1399 |
-
|
| 1400 |
-
def __init__(self, config):
|
| 1401 |
-
"""
|
| 1402 |
-
Initializes the ERNIE MoE model for causal language modeling.
|
| 1403 |
-
|
| 1404 |
-
Args:
|
| 1405 |
-
config (dict): Model configuration.
|
| 1406 |
-
"""
|
| 1407 |
-
super().__init__(config)
|
| 1408 |
-
self.config = config
|
| 1409 |
-
self.model = Ernie4_5_Model(config)
|
| 1410 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size,bias=config.weight_share_add_bias and config.use_bias) # TODO
|
| 1411 |
-
self._loss_function = ErniePretrainingCriterion(config)
|
| 1412 |
-
|
| 1413 |
-
# Initialize weights and apply final processing
|
| 1414 |
-
self.post_init()
|
| 1415 |
-
|
| 1416 |
-
def get_input_embeddings(self):
|
| 1417 |
-
"""Returns the input embeddings layer."""
|
| 1418 |
-
return self.model.embed_tokens
|
| 1419 |
-
|
| 1420 |
-
def set_input_embeddings(self, value):
|
| 1421 |
-
"""Sets the input embeddings layer."""
|
| 1422 |
-
self.ernie.embed_tokens = value
|
| 1423 |
-
|
| 1424 |
-
def get_output_embeddings(self):
|
| 1425 |
-
"""Returns the output embeddings (LM head)."""
|
| 1426 |
-
return self.lm_head
|
| 1427 |
-
|
| 1428 |
-
def set_output_embeddings(self, new_embeddings):
|
| 1429 |
-
"""Sets the output embeddings layer."""
|
| 1430 |
-
self.lm_head = new_embeddings
|
| 1431 |
-
|
| 1432 |
-
def set_decoder(self, decoder):
|
| 1433 |
-
"""Sets the ERNIE decoder model."""
|
| 1434 |
-
self.model = decoder
|
| 1435 |
-
|
| 1436 |
-
def get_decoder(self):
|
| 1437 |
-
"""Get the transformer decoder."""
|
| 1438 |
-
return self.model
|
| 1439 |
-
|
| 1440 |
-
@can_return_tuple
|
| 1441 |
-
def forward(
|
| 1442 |
-
self,
|
| 1443 |
-
input_ids,
|
| 1444 |
-
attention_mask=None,
|
| 1445 |
-
position_ids=None,
|
| 1446 |
-
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
| 1447 |
-
inputs_embeds=None,
|
| 1448 |
-
labels=None,
|
| 1449 |
-
loss_mask=None,
|
| 1450 |
-
use_cache=False,
|
| 1451 |
-
output_attentions: Optional[bool] = None,
|
| 1452 |
-
output_hidden_states: Optional[bool] = None,
|
| 1453 |
-
**kwargs: Unpack[KwargsForCausalLM],
|
| 1454 |
-
):
|
| 1455 |
-
"""
|
| 1456 |
-
Forward pass for causal language modeling.
|
| 1457 |
-
"""
|
| 1458 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1459 |
-
output_hidden_states = (
|
| 1460 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1461 |
-
)
|
| 1462 |
-
|
| 1463 |
-
outputs = self.model(
|
| 1464 |
-
input_ids,
|
| 1465 |
-
position_ids=position_ids,
|
| 1466 |
-
attention_mask=attention_mask,
|
| 1467 |
-
inputs_embeds=inputs_embeds,
|
| 1468 |
-
use_cache=use_cache,
|
| 1469 |
-
past_key_values=past_key_values,
|
| 1470 |
-
output_attentions=output_attentions,
|
| 1471 |
-
output_hidden_states=output_hidden_states,
|
| 1472 |
-
**kwargs,
|
| 1473 |
-
)
|
| 1474 |
-
|
| 1475 |
-
hidden_states = outputs.last_hidden_state
|
| 1476 |
-
mtp_outputs = outputs.mtp_outputs
|
| 1477 |
-
|
| 1478 |
-
logits = self.lm_head(hidden_states)
|
| 1479 |
-
mtp_logits = []
|
| 1480 |
-
if len(mtp_outputs) > 0:
|
| 1481 |
-
mtp_logits = [self.lm_head(_hidden_states) for _hidden_states in mtp_outputs]
|
| 1482 |
-
loss, router_loss = None, None
|
| 1483 |
-
if getattr(self.config, "use_moe", False):
|
| 1484 |
-
router_loss = outputs.router_loss
|
| 1485 |
-
|
| 1486 |
-
if labels is not None:
|
| 1487 |
-
loss, _ = self.loss_function(logits, labels, loss_mask, router_loss, mtp_logits)
|
| 1488 |
-
|
| 1489 |
-
return Ernie4_5_MoeCausalLMOutputWithPast(
|
| 1490 |
-
loss=loss,
|
| 1491 |
-
logits=logits,
|
| 1492 |
-
past_key_values=outputs.past_key_values,
|
| 1493 |
-
hidden_states=outputs.hidden_states,
|
| 1494 |
-
attentions=outputs.attentions,
|
| 1495 |
-
router_loss=router_loss,
|
| 1496 |
-
)
|
| 1497 |
-
|
| 1498 |
-
|
| 1499 |
-
|
| 1500 |
-
__all__ = [
|
| 1501 |
-
"Ernie4_5_Model",
|
| 1502 |
-
"Ernie4_5_MoeForCausalLM",
|
| 1503 |
-
"Ernie4_5_PretrainedModel"
|
| 1504 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|