Create onnx_inference.py
Browse files- onnx_inference.py +103 -0
onnx_inference.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import json
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
import re
|
| 5 |
+
import emoji
|
| 6 |
+
from transformers import BertTokenizer
|
| 7 |
+
import onnxruntime as ort
|
| 8 |
+
|
| 9 |
+
def preprocess_text(text):
|
| 10 |
+
"""Preprocess the input text to match training conditions."""
|
| 11 |
+
text = re.sub(r'u/\w+', '[USER]', text)
|
| 12 |
+
text = re.sub(r'r/\w+', '[SUBREDDIT]', text)
|
| 13 |
+
text = re.sub(r'http[s]?://\S+', '[URL]', text)
|
| 14 |
+
text = emoji.demojize(text, delimiters=(" ", " "))
|
| 15 |
+
text = text.lower()
|
| 16 |
+
return text
|
| 17 |
+
|
| 18 |
+
def load_model_and_resources():
|
| 19 |
+
"""Load the ONNX model, tokenizer, emotion labels, and thresholds from Hugging Face."""
|
| 20 |
+
repo_id = "logasanjeev/goemotions-bert"
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
tokenizer = BertTokenizer.from_pretrained(repo_id)
|
| 24 |
+
except Exception as e:
|
| 25 |
+
raise RuntimeError(f"Error loading tokenizer: {str(e)}")
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.onnx")
|
| 29 |
+
session = ort.InferenceSession(model_path)
|
| 30 |
+
except Exception as e:
|
| 31 |
+
raise RuntimeError(f"Error loading ONNX model: {str(e)}")
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
thresholds_file = hf_hub_download(repo_id=repo_id, filename="optimized_thresholds.json")
|
| 35 |
+
with open(thresholds_file, "r") as f:
|
| 36 |
+
thresholds_data = json.load(f)
|
| 37 |
+
if not (isinstance(thresholds_data, dict) and "emotion_labels" in thresholds_data and "thresholds" in thresholds_data):
|
| 38 |
+
raise ValueError("Unexpected format in optimized_thresholds.json. Expected a dictionary with keys 'emotion_labels' and 'thresholds'.")
|
| 39 |
+
emotion_labels = thresholds_data["emotion_labels"]
|
| 40 |
+
thresholds = thresholds_data["thresholds"]
|
| 41 |
+
except Exception as e:
|
| 42 |
+
raise RuntimeError(f"Error loading thresholds: {str(e)}")
|
| 43 |
+
|
| 44 |
+
return session, tokenizer, emotion_labels, thresholds
|
| 45 |
+
|
| 46 |
+
SESSION, TOKENIZER, EMOTION_LABELS, THRESHOLDS = None, None, None, None
|
| 47 |
+
|
| 48 |
+
def predict_emotions(text):
|
| 49 |
+
"""Predict emotions for the given text using the GoEmotions BERT ONNX model.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
text (str): The input text to analyze.
|
| 53 |
+
|
| 54 |
+
Returns:
|
| 55 |
+
tuple: (predictions, processed_text)
|
| 56 |
+
- predictions (str): Formatted string of predicted emotions and their confidence scores.
|
| 57 |
+
- processed_text (str): The preprocessed input text.
|
| 58 |
+
"""
|
| 59 |
+
global SESSION, TOKENIZER, EMOTION_LABELS, THRESHOLDS
|
| 60 |
+
|
| 61 |
+
if SESSION is None:
|
| 62 |
+
SESSION, TOKENIZER, EMOTION_LABELS, THRESHOLDS = load_model_and_resources()
|
| 63 |
+
|
| 64 |
+
processed_text = preprocess_text(text)
|
| 65 |
+
|
| 66 |
+
encodings = TOKENIZER(
|
| 67 |
+
processed_text,
|
| 68 |
+
padding='max_length',
|
| 69 |
+
truncation=True,
|
| 70 |
+
max_length=128,
|
| 71 |
+
return_tensors='np'
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
inputs = {
|
| 75 |
+
'input_ids': encodings['input_ids'].astype(np.int64),
|
| 76 |
+
'attention_mask': encodings['attention_mask'].astype(np.int64)
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
logits = SESSION.run(None, inputs)[0][0]
|
| 80 |
+
logits = 1 / (1 + np.exp(-logits)) # Sigmoid
|
| 81 |
+
|
| 82 |
+
predictions = []
|
| 83 |
+
for i, (logit, thresh) in enumerate(zip(logits, THRESHOLDS)):
|
| 84 |
+
if logit >= thresh:
|
| 85 |
+
predictions.append((EMOTION_LABELS[i], round(logit, 4)))
|
| 86 |
+
|
| 87 |
+
predictions.sort(key=lambda x: x[1], reverse=True)
|
| 88 |
+
|
| 89 |
+
result = "\n".join([f"{emotion}: {confidence:.4f}" for emotion, confidence in predictions]) or "No emotions predicted."
|
| 90 |
+
return result, processed_text
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
import argparse
|
| 94 |
+
|
| 95 |
+
parser = argparse.ArgumentParser(description="Predict emotions using the GoEmotions BERT ONNX model.")
|
| 96 |
+
parser.add_argument("text", type=str, help="The input text to analyze for emotions.")
|
| 97 |
+
args = parser.parse_args()
|
| 98 |
+
|
| 99 |
+
result, processed = predict_emotions(args.text)
|
| 100 |
+
print(f"Input: {args.text}")
|
| 101 |
+
print(f"Processed: {processed}")
|
| 102 |
+
print("Predicted Emotions:")
|
| 103 |
+
print(result)
|