File size: 6,594 Bytes
352cc88 4ba7237 dc0317d 352cc88 f27250b 95e08f9 023161c dd7eb79 f27250b dd7eb79 023161c 95e08f9 54d0bf8 c49e8ec 54d0bf8 023161c 92f3267 dc0317d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
language:
- en
license: mit
datasets:
- anon8231489123/ShareGPT_Vicuna_unfiltered
model-index:
- name: yi6B_Vicuna
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 46.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lorinma/yi6B_Vicuna
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 69.3
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lorinma/yi6B_Vicuna
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lorinma/yi6B_Vicuna
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.11
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lorinma/yi6B_Vicuna
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.67
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lorinma/yi6B_Vicuna
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 18.42
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lorinma/yi6B_Vicuna
name: Open LLM Leaderboard
---
**Bug**: Having a bit issue with the tokenizer, still figuring out...You can use the original Yi tokenizer configuratin.
Reproduce Vicuna, but based on yi-6B. The training data I used was ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json.
The training framework I used https://github.com/shibing624/MedicalGPT , train shell:
```
CUDA_VISIBLE_DEVICES=0,1,2,3,5 torchrun --nproc_per_node 5 ../supervised_finetuning.py \
--model_type auto \
--model_name_or_path /data/llm/models/Pretrained/yi-6B/01ai/Yi-6B \
--tokenizer_name_or_path /data/llm/models/Pretrained/yi-6B/01ai/Yi-6B \
--train_file_dir ../data/finetune/vicuna/ \
--per_device_train_batch_size 2\
--do_train \
--max_train_samples -1 \
--num_train_epochs 3 \
--learning_rate 2e-5 \
--weight_decay 0. \
--bf16 \
--use_peft False \
--logging_strategy steps \
--logging_steps 10 \
--save_strategy epoch \
--save_total_limit 5 \
--gradient_accumulation_steps 1 \
--preprocessing_num_workers 8 \
--output_dir ../outputs/20240106_yi6B_vicuna \
--overwrite_output_dir \
--ddp_timeout 30000 \
--logging_first_step True \
--torch_dtype bfloat16 \
--device_map auto \
--report_to tensorboard \
--ddp_find_unused_parameters False \
--gradient_checkpointing True \
--cache_dir ./cache \
--model_max_length 4096 \
--deepspeed ../deepspeed_zero_stage2_config_no16.json \
--template_name yi
```
The training used 5*A800 for 3 epochs
```
***** train metrics *****
epoch = 3.0
train_loss = 0.3785
train_runtime = 1 day, 10:01:13.95
train_samples = 93204
train_samples_per_second = 2.24
train_steps_per_second = 0.224
```
Post-training inference is also using this repository:
```
CUDA_VISIBLE_DEVICES=4 python gradio_demo.py --model_type auto --base_model /data/mn/shibing624/MedicalGPT-1.6.3-231215/outputs/20240106_yi6B_vicuna --tokenizer_path /data/mn/shibing624/MedicalGPT-1.6.3-231215/outputs/20240106_yi6B_vicuna --template_name yi --gpus 4
CUDA_VISIBLE_DEVICES=6 python inference.py --model_type auto --base_model /data/mn/shibing624/MedicalGPT-1.6.3-231215/outputs/20240106_yi6B_vicuna --template_name yi --gpus 6 --interactive --tokenizer_path /data/llm/models/Pretrained/yi-6B/01ai/Yi-6B
```
We can see from some preliminary results, the conversation is natural and informative (unsurprisingly).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6413d7be996b2e426f230fb7/WfQYyyLxtXA2KlePmIPQJ.png)
Also we observe the unfiltering seems to be working! **Heads up** some examples are unsafe and inappropriate, this is entirely for research purposes, to test how alignment-filtered SFT data affect LLM's final output.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6413d7be996b2e426f230fb7/pklSsljCRN34QuL2ZF2zU.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6413d7be996b2e426f230fb7/22pTSVkBCVlQ5N8A8JBkF.png)
**Update:** Evaluate on Open LLM Leaderboard:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6413d7be996b2e426f230fb7/Xp11HLQqwh0HMSJgpr19n.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lorinma__yi6B_Vicuna)
| Metric |Value|
|---------------------------------|----:|
|Avg. |51.02|
|AI2 Reasoning Challenge (25-Shot)|46.16|
|HellaSwag (10-Shot) |69.30|
|MMLU (5-Shot) |58.43|
|TruthfulQA (0-shot) |48.11|
|Winogrande (5-shot) |65.67|
|GSM8k (5-shot) |18.42|
|