Update modeling_norbert.py
Browse files- modeling_norbert.py +8 -2
modeling_norbert.py
CHANGED
|
@@ -329,6 +329,7 @@ class NorbertModel(NorbertPreTrainedModel):
|
|
| 329 |
output_hidden_states: Optional[bool] = None,
|
| 330 |
output_attentions: Optional[bool] = None,
|
| 331 |
return_dict: Optional[bool] = None,
|
|
|
|
| 332 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 333 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 334 |
|
|
@@ -370,6 +371,7 @@ class NorbertForMaskedLM(NorbertModel):
|
|
| 370 |
output_attentions: Optional[bool] = None,
|
| 371 |
return_dict: Optional[bool] = None,
|
| 372 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 373 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 374 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 375 |
|
|
@@ -446,6 +448,7 @@ class NorbertForSequenceClassification(NorbertModel):
|
|
| 446 |
output_hidden_states: Optional[bool] = None,
|
| 447 |
return_dict: Optional[bool] = None,
|
| 448 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 449 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 450 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 451 |
|
|
@@ -511,6 +514,7 @@ class NorbertForTokenClassification(NorbertModel):
|
|
| 511 |
output_hidden_states: Optional[bool] = None,
|
| 512 |
return_dict: Optional[bool] = None,
|
| 513 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 514 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 515 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 516 |
|
|
@@ -558,7 +562,8 @@ class NorbertForQuestionAnswering(NorbertModel):
|
|
| 558 |
output_hidden_states: Optional[bool] = None,
|
| 559 |
return_dict: Optional[bool] = None,
|
| 560 |
start_positions: Optional[torch.Tensor] = None,
|
| 561 |
-
end_positions: Optional[torch.Tensor] = None
|
|
|
|
| 562 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 563 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 564 |
|
|
@@ -624,7 +629,8 @@ class NorbertForMultipleChoice(NorbertModel):
|
|
| 624 |
labels: Optional[torch.Tensor] = None,
|
| 625 |
output_attentions: Optional[bool] = None,
|
| 626 |
output_hidden_states: Optional[bool] = None,
|
| 627 |
-
return_dict: Optional[bool] = None
|
|
|
|
| 628 |
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
| 629 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 630 |
num_choices = input_ids.shape[1]
|
|
|
|
| 329 |
output_hidden_states: Optional[bool] = None,
|
| 330 |
output_attentions: Optional[bool] = None,
|
| 331 |
return_dict: Optional[bool] = None,
|
| 332 |
+
**kwargs
|
| 333 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 334 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 335 |
|
|
|
|
| 371 |
output_attentions: Optional[bool] = None,
|
| 372 |
return_dict: Optional[bool] = None,
|
| 373 |
labels: Optional[torch.LongTensor] = None,
|
| 374 |
+
**kwargs
|
| 375 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 376 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 377 |
|
|
|
|
| 448 |
output_hidden_states: Optional[bool] = None,
|
| 449 |
return_dict: Optional[bool] = None,
|
| 450 |
labels: Optional[torch.LongTensor] = None,
|
| 451 |
+
**kwargs
|
| 452 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 453 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 454 |
|
|
|
|
| 514 |
output_hidden_states: Optional[bool] = None,
|
| 515 |
return_dict: Optional[bool] = None,
|
| 516 |
labels: Optional[torch.LongTensor] = None,
|
| 517 |
+
**kwargs
|
| 518 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 519 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 520 |
|
|
|
|
| 562 |
output_hidden_states: Optional[bool] = None,
|
| 563 |
return_dict: Optional[bool] = None,
|
| 564 |
start_positions: Optional[torch.Tensor] = None,
|
| 565 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 566 |
+
**kwargs
|
| 567 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 568 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 569 |
|
|
|
|
| 629 |
labels: Optional[torch.Tensor] = None,
|
| 630 |
output_attentions: Optional[bool] = None,
|
| 631 |
output_hidden_states: Optional[bool] = None,
|
| 632 |
+
return_dict: Optional[bool] = None,
|
| 633 |
+
**kwargs
|
| 634 |
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
| 635 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 636 |
num_choices = input_ids.shape[1]
|