davda54 commited on
Commit
03dfdec
·
1 Parent(s): 5e35bcd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -6
README.md CHANGED
@@ -14,6 +14,10 @@ license: cc-by-4.0
14
 
15
  # NorBERT 3 xs
16
 
 
 
 
 
17
 
18
  ## Other sizes:
19
  - [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs)
@@ -21,18 +25,23 @@ license: cc-by-4.0
21
  - [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base)
22
  - [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large)
23
 
 
 
 
 
 
 
24
 
25
  ## Example usage
26
 
27
- This model currently needs a custom wrapper from `modeling_norbert.py`. Then you can use it like this:
28
 
29
  ```python
30
  import torch
31
- from transformers import AutoTokenizer
32
- from modeling_norbert import NorbertForMaskedLM
33
 
34
- tokenizer = AutoTokenizer.from_pretrained("path/to/folder")
35
- bert = NorbertForMaskedLM.from_pretrained("path/to/folder")
36
 
37
  mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
38
  input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
@@ -43,4 +52,29 @@ output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argma
43
  print(tokenizer.decode(output_text[0].tolist()))
44
  ```
45
 
46
- The following classes are currently implemented: `NorbertForMaskedLM`, `NorbertForSequenceClassification`, `NorbertForTokenClassification`, `NorbertForQuestionAnswering` and `NorbertForMultipleChoice`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  # NorBERT 3 xs
16
 
17
+ <img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%>
18
+
19
+ The official release of a new generation of NorBERT language models described in paper [**NorBench — A Benchmark for Norwegian Language Models**](https://arxiv.org/abs/2305.03880). Plese read the paper to learn more details about the model.
20
+
21
 
22
  ## Other sizes:
23
  - [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs)
 
25
  - [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base)
26
  - [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large)
27
 
28
+ ## Generative NorT5 siblings:
29
+ - [NorT5 xs (32M)](https://huggingface.co/ltg/nort5-xs)
30
+ - [NorT5 small (88M)](https://huggingface.co/ltg/nort5-small)
31
+ - [NorT5 base (228M)](https://huggingface.co/ltg/nort5-base)
32
+ - [NorT5 large (808M)](https://huggingface.co/ltg/nort5-large)
33
+
34
 
35
  ## Example usage
36
 
37
+ This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`.
38
 
39
  ```python
40
  import torch
41
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
 
42
 
43
+ tokenizer = AutoTokenizer.from_pretrained("ltg/norbert3-xs")
44
+ model = AutoModelForMaskedLM.from_pretrained("ltg/norbert3-xs", trust_remote_code=True)
45
 
46
  mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
47
  input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
 
52
  print(tokenizer.decode(output_text[0].tolist()))
53
  ```
54
 
55
+ The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`.
56
+
57
+ ## Cite us
58
+
59
+ ```bibtex
60
+ @inproceedings{samuel-etal-2023-norbench,
61
+ title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
62
+ author = "Samuel, David and
63
+ Kutuzov, Andrey and
64
+ Touileb, Samia and
65
+ Velldal, Erik and
66
+ {\O}vrelid, Lilja and
67
+ R{\o}nningstad, Egil and
68
+ Sigdel, Elina and
69
+ Palatkina, Anna",
70
+ booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
71
+ month = may,
72
+ year = "2023",
73
+ address = "T{\'o}rshavn, Faroe Islands",
74
+ publisher = "University of Tartu Library",
75
+ url = "https://aclanthology.org/2023.nodalida-1.61",
76
+ pages = "618--633",
77
+ abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.",
78
+ }
79
+
80
+ ```