norbert4-base / configuration_gptbert.py
davda54's picture
Upload folder using huggingface_hub
971057e verified
raw
history blame
3.4 kB
from __future__ import annotations
import json
from pathlib import Path
import copy
from transformers.configuration_utils import PretrainedConfig
class GptBertConfig(PretrainedConfig):
def __init__(
self,
config_file: Path | str | None = None,
**kwargs
):
super().__init__(**kwargs)
self.model: str
# General information
self.model = "base"
# Vocabulary
self.vocab_size = 16384
self.max_sequence_length = 512
# Model dimensions
self.hidden_size = 768
self.intermediate_size = 2048
self.num_attention_heads = 12
self.num_layers = 12
self.d_qk = 64
# Dropout probabilities
self.embedding_dropout_p = 0.1
self.attention_probabilities_dropout_p = 0.1
self.attention_output_dropout_p = 0.1
self.feed_forward_dropout_p = 0.1
self.attention_dropout = 0.1
self.hidden_dropout_prob = 0.2
# Position Emebedding
self.rope_theta = 160_000
# Norms
self.word_norm_eps = 1e-7
self.word_norm_affine = False
self.attention_pre_norm_eps = 1e-7
self.attention_pre_norm_affine = False
self.attention_inter_norm_eps = 1e-7
self.attention_inter_norm_affine = True
self.feed_forward_pre_norm_eps = 1e-7
self.feed_forward_pre_norm_affine = False
self.feed_forward_inter_norm_eps = 1e-7
self.feed_forward_inter_norm_affine = False
self.classifier_pre_norm_eps = 1e-7
self.classifier_pre_norm_affine = False
self.classifier_post_norm_eps = 1e-7
self.classifier_post_norm_affine = False
if config_file is not None:
if type(config_file) is str:
config_file = Path(config_file)
assert type(config_file) is not Path, "The config_file should either be a Path or str"
with config_file.open("r") as file:
config = json.load(file)
for attr, value in config.items():
if isinstance(value, str):
value = value.lower()
setattr(self, attr, value)
for attr, value in kwargs.items():
if isinstance(value, str):
value = value.lower()
setattr(self, attr, value)
def __repr__(self) -> str:
return str(self.to_json_string())
def to_dict(self) -> dict:
"""Serializes this instance to a Python dictionary."""
output: dict
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self) -> str:
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Path | str) -> None:
"""Save this instance to a json file."""
if isinstance(json_file_path, str):
json_file_path: Path = Path(json_file_path)
with json_file_path.open("w", encoding='utf-8') as writer:
writer.write(self.to_json_string())
@classmethod
def create_base_config(cls, json_file_path: Path | str | None = None) -> GptBertConfig:
config: GptBertConfig
config = GptBertConfig()
if json_file_path is not None:
config.to_json_file(json_file_path)
return config