lucio commited on
Commit
0bbdad1
1 Parent(s): c81d5d1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ug
4
+ license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - mozilla-foundation/common_voice_8_0
8
+ - generated_from_trainer
9
+ datasets:
10
+ - common_voice
11
+ model-index:
12
+ - name: xls-r-uyghur-cv8
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # xls-r-uyghur-cv8
20
+
21
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2430
24
+ - Wer: 0.3804
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 7.5e-05
44
+ - train_batch_size: 8
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 2000
52
+ - num_epochs: 50.0
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
59
+ | 3.6871 | 2.66 | 500 | 3.5374 | 1.0 |
60
+ | 3.1501 | 5.32 | 1000 | 3.1278 | 1.0 |
61
+ | 1.5843 | 7.97 | 1500 | 0.6358 | 0.6914 |
62
+ | 1.3378 | 10.64 | 2000 | 0.4422 | 0.5925 |
63
+ | 1.2595 | 13.3 | 2500 | 0.3921 | 0.5512 |
64
+ | 1.1643 | 15.95 | 3000 | 0.3507 | 0.5149 |
65
+ | 1.1352 | 18.61 | 3500 | 0.3351 | 0.5019 |
66
+ | 1.1113 | 21.28 | 4000 | 0.3153 | 0.4845 |
67
+ | 1.0914 | 23.93 | 4500 | 0.3050 | 0.4594 |
68
+ | 1.0468 | 26.59 | 5000 | 0.2890 | 0.4470 |
69
+ | 1.0473 | 29.25 | 5500 | 0.2755 | 0.4331 |
70
+ | 1.0065 | 31.91 | 6000 | 0.2718 | 0.4264 |
71
+ | 0.9794 | 34.57 | 6500 | 0.2646 | 0.4193 |
72
+ | 0.9849 | 37.23 | 7000 | 0.2610 | 0.4058 |
73
+ | 0.9496 | 39.89 | 7500 | 0.2522 | 0.3985 |
74
+ | 0.9367 | 42.55 | 8000 | 0.2514 | 0.3947 |
75
+ | 0.9295 | 45.21 | 8500 | 0.2458 | 0.3883 |
76
+ | 0.9187 | 47.87 | 9000 | 0.2439 | 0.3833 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.16.0.dev0
82
+ - Pytorch 1.10.1+cu102
83
+ - Datasets 1.18.2.dev0
84
+ - Tokenizers 0.11.0