--- language: - ug license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: xls-r-uyghur-cv8 results: [] --- # xls-r-uyghur-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset. It achieves the following results on the evaluation set: - Loss: 0.2430 - Wer: 0.3804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6871 | 2.66 | 500 | 3.5374 | 1.0 | | 3.1501 | 5.32 | 1000 | 3.1278 | 1.0 | | 1.5843 | 7.97 | 1500 | 0.6358 | 0.6914 | | 1.3378 | 10.64 | 2000 | 0.4422 | 0.5925 | | 1.2595 | 13.3 | 2500 | 0.3921 | 0.5512 | | 1.1643 | 15.95 | 3000 | 0.3507 | 0.5149 | | 1.1352 | 18.61 | 3500 | 0.3351 | 0.5019 | | 1.1113 | 21.28 | 4000 | 0.3153 | 0.4845 | | 1.0914 | 23.93 | 4500 | 0.3050 | 0.4594 | | 1.0468 | 26.59 | 5000 | 0.2890 | 0.4470 | | 1.0473 | 29.25 | 5500 | 0.2755 | 0.4331 | | 1.0065 | 31.91 | 6000 | 0.2718 | 0.4264 | | 0.9794 | 34.57 | 6500 | 0.2646 | 0.4193 | | 0.9849 | 37.23 | 7000 | 0.2610 | 0.4058 | | 0.9496 | 39.89 | 7500 | 0.2522 | 0.3985 | | 0.9367 | 42.55 | 8000 | 0.2514 | 0.3947 | | 0.9295 | 45.21 | 8500 | 0.2458 | 0.3883 | | 0.9187 | 47.87 | 9000 | 0.2439 | 0.3833 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0