--- language: - ug license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: xls-r-uyghur-cv8 results: [] --- # xls-r-uyghur-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset. It achieves the following results on the evaluation set: - Loss: 0.2036 - Wer: 0.2977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.2892 | 2.66 | 500 | 3.2415 | 1.0 | | 2.9206 | 5.32 | 1000 | 2.4381 | 1.0056 | | 1.4909 | 7.97 | 1500 | 0.5428 | 0.6705 | | 1.3395 | 10.64 | 2000 | 0.4207 | 0.5995 | | 1.2718 | 13.3 | 2500 | 0.3743 | 0.5648 | | 1.1798 | 15.95 | 3000 | 0.3225 | 0.4927 | | 1.1392 | 18.61 | 3500 | 0.3097 | 0.4627 | | 1.1143 | 21.28 | 4000 | 0.2996 | 0.4505 | | 1.0923 | 23.93 | 4500 | 0.2841 | 0.4229 | | 1.0516 | 26.59 | 5000 | 0.2705 | 0.4113 | | 1.051 | 29.25 | 5500 | 0.2622 | 0.4078 | | 1.021 | 31.91 | 6000 | 0.2611 | 0.4009 | | 0.9886 | 34.57 | 6500 | 0.2498 | 0.3921 | | 0.984 | 37.23 | 7000 | 0.2521 | 0.3845 | | 0.9631 | 39.89 | 7500 | 0.2413 | 0.3791 | | 0.9353 | 42.55 | 8000 | 0.2391 | 0.3612 | | 0.922 | 45.21 | 8500 | 0.2363 | 0.3571 | | 0.9116 | 47.87 | 9000 | 0.2285 | 0.3668 | | 0.8951 | 50.53 | 9500 | 0.2256 | 0.3729 | | 0.8865 | 53.19 | 10000 | 0.2228 | 0.3663 | | 0.8792 | 55.85 | 10500 | 0.2221 | 0.3656 | | 0.8682 | 58.51 | 11000 | 0.2228 | 0.3323 | | 0.8492 | 61.17 | 11500 | 0.2167 | 0.3446 | | 0.8365 | 63.83 | 12000 | 0.2156 | 0.3321 | | 0.8298 | 66.49 | 12500 | 0.2142 | 0.3400 | | 0.808 | 69.15 | 13000 | 0.2079 | 0.3148 | | 0.7999 | 71.81 | 13500 | 0.2117 | 0.3225 | | 0.7871 | 74.47 | 14000 | 0.2088 | 0.3174 | | 0.7858 | 77.13 | 14500 | 0.2060 | 0.3008 | | 0.7764 | 79.78 | 15000 | 0.2128 | 0.3146 | | 0.7684 | 82.45 | 15500 | 0.2086 | 0.3101 | | 0.7717 | 85.11 | 16000 | 0.2048 | 0.3069 | | 0.7435 | 87.76 | 16500 | 0.2027 | 0.3055 | | 0.7378 | 90.42 | 17000 | 0.2059 | 0.2993 | | 0.7406 | 93.08 | 17500 | 0.2040 | 0.2966 | | 0.7361 | 95.74 | 18000 | 0.2056 | 0.3000 | | 0.7379 | 98.4 | 18500 | 0.2031 | 0.2976 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0