--- license: mit tags: - generated_from_trainer datasets: - conllpp metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-md-conllpp results: - task: name: Token Classification type: token-classification dataset: name: conllpp type: conllpp config: conllpp split: train args: conllpp metrics: - name: Precision type: precision value: 0.9971177780689113 - name: Recall type: recall value: 0.9968043586452576 - name: F1 type: f1 value: 0.9969610437242934 - name: Accuracy type: accuracy value: 0.995003768708948 --- # roberta-large-md-conllpp This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conllpp dataset. It achieves the following results on the evaluation set: - Loss: 0.0457 - Precision: 0.9971 - Recall: 0.9968 - F1: 0.9970 - Accuracy: 0.9950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0748 | 1.0 | 878 | 0.0309 | 0.9959 | 0.9962 | 0.9961 | 0.9935 | | 0.0111 | 2.0 | 1756 | 0.0346 | 0.9974 | 0.9967 | 0.9970 | 0.9951 | | 0.0057 | 3.0 | 2634 | 0.0348 | 0.9974 | 0.9960 | 0.9967 | 0.9946 | | 0.0031 | 4.0 | 3512 | 0.0434 | 0.9976 | 0.9964 | 0.9970 | 0.9951 | | 0.0017 | 5.0 | 4390 | 0.0457 | 0.9971 | 0.9968 | 0.9970 | 0.9950 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1