--- library_name: transformers license: apache-2.0 base_model: EuroBERT/EuroBERT-210m tags: - generated_from_trainer metrics: - accuracy model-index: - name: EuroBERT-immigration-stance-positive results: [] --- # EuroBERT-immigration-stance-positive This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1444 - Accuracy: 0.7389 - F1 Macro: 0.7210 - Accuracy Balanced: 0.7165 - F1 Micro: 0.7389 - Precision Macro: 0.7342 - Recall Macro: 0.7165 - Precision Micro: 0.7389 - Recall Micro: 0.7389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 40 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.697 | 1.0 | 654 | 0.6768 | 0.5908 | 0.3714 | 0.5 | 0.5908 | 0.2954 | 0.5 | 0.5908 | 0.5908 | | 0.7267 | 2.0 | 1308 | 0.6543 | 0.5878 | 0.5797 | 0.6340 | 0.5878 | 0.6642 | 0.6340 | 0.5878 | 0.5878 | | 0.7024 | 3.0 | 1962 | 0.9052 | 0.6779 | 0.6778 | 0.7044 | 0.6779 | 0.7076 | 0.7044 | 0.6779 | 0.6779 | | 0.675 | 4.0 | 2616 | 1.1944 | 0.7206 | 0.7088 | 0.7073 | 0.7206 | 0.7108 | 0.7073 | 0.7206 | 0.7206 | | 0.5142 | 5.0 | 3270 | 1.4177 | 0.7160 | 0.7097 | 0.7126 | 0.7160 | 0.7084 | 0.7126 | 0.7160 | 0.7160 | | 0.3573 | 6.0 | 3924 | 1.6717 | 0.7267 | 0.7159 | 0.7148 | 0.7267 | 0.7172 | 0.7148 | 0.7267 | 0.7267 | | 0.1643 | 7.0 | 4578 | 1.6307 | 0.7389 | 0.7295 | 0.7292 | 0.7389 | 0.7300 | 0.7292 | 0.7389 | 0.7389 | | 0.1253 | 8.0 | 5232 | 1.8601 | 0.7374 | 0.7187 | 0.7141 | 0.7374 | 0.7331 | 0.7141 | 0.7374 | 0.7374 | | 0.0937 | 9.0 | 5886 | 2.0865 | 0.7420 | 0.7209 | 0.7157 | 0.7420 | 0.7412 | 0.7157 | 0.7420 | 0.7420 | | 0.0562 | 10.0 | 6540 | 2.1444 | 0.7389 | 0.7210 | 0.7165 | 0.7389 | 0.7342 | 0.7165 | 0.7389 | 0.7389 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1