lukmanaj commited on
Commit
af0fca3
·
verified ·
1 Parent(s): e60e762

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - brain-tumor
5
+ - medical-imaging
6
+ - multimodal
7
+ - pytorch
8
+ - ct
9
+ - mri
10
+ - streamlit
11
+ - classification
12
+ model-index:
13
+ - name: MultiModal Brain Tumor Classifier
14
+ results: []
15
+ ---
16
+
17
+ # 🧠 Brain Tumor Classifier (CT + MRI)
18
+
19
+ This model uses a multimodal DenseNet architecture to classify brain tumors based on CT and MRI scans. It was trained on paired data with class labels: `Healthy` or `Tumour`.
20
+
21
+ ## 🔬 Model Details
22
+ - Architecture: Dual DenseNet201 backbones + fusion classifier
23
+ - Input modalities: CT image, MRI image (either or both)
24
+ - Output: Binary classification (`Healthy`, `Tumour`)
25
+ - Framework: PyTorch
26
+
27
+ ## 📦 Files
28
+ - `multimodal_brain_tumor_model.pth`: Pretrained weights
29
+ - Intended to be used with a Streamlit app (see [GitHub Repo](https://github.com/lukmanaj/CTMRI-Net)).
30
+
31
+ ## 🚀 Usage
32
+
33
+ ```python
34
+ from huggingface_hub import hf_hub_download
35
+ import torch
36
+
37
+ path = hf_hub_download("lukmanaj/brain-tumor-multimodal", "multimodal_brain_tumor_model.pth")
38
+ model.load_state_dict(torch.load(path))
39
+ ```
40
+
41
+
42
+ ## 📊 Training Performance
43
+
44
+ | Epoch | Train Loss | Accuracy |
45
+ |-------|------------|----------|
46
+ | 1 | 0.1552 | 94.82% |
47
+ | 5 | 0.0368 | 98.78% |
48
+
49
+ > **Note**: The model shows signs of overfitting; further validation and augmentation are advised.
50
+
51
+ ## 🧑‍⚕️ Intended Use
52
+
53
+ - Designed for educational and research purposes.
54
+ - Not certified for clinical or diagnostic use.
55
+
56
+ ## 📚 Citation
57
+
58
+ Aliyu, L. (2025). Brain Tumor Classification using Multimodal Deep Learning
59
+
60
+
61
+
62
+ ## 🤝 Acknowledgements
63
+
64
+ - [Masoud Nickparvar’s CT+MRI dataset on Kaggle](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-multimodal-image-ct-and-mri)
65
+