--- library_name: transformers language: - np license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Nepali-BERT-sentiment results: [] --- # Nepali-BERT-sentiment This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the Custom Devangari Datasets dataset. It achieves the following results on the evaluation set: - Loss: 0.6887 - Accuracy: 0.8660 - F1: 0.4658 - Precision: 0.4343 - Recall: 0.5021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5999 | 1.0 | 595 | 0.5313 | 0.7274 | 0.3965 | 0.2670 | 0.7700 | | 0.5114 | 2.0 | 1190 | 0.4717 | 0.7745 | 0.4427 | 0.3106 | 0.7700 | | 0.4005 | 3.0 | 1785 | 0.4986 | 0.7907 | 0.4556 | 0.3266 | 0.7532 | | 0.3087 | 4.0 | 2380 | 0.6887 | 0.8660 | 0.4658 | 0.4343 | 0.5021 | | 0.2292 | 5.0 | 2975 | 0.8148 | 0.8626 | 0.4615 | 0.4240 | 0.5063 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1