use chat completions instead of base model syntax
Browse files
README.md
CHANGED
@@ -194,12 +194,12 @@ Phi-4-mini-instruct is also available in [Azure AI Studio]()
|
|
194 |
|
195 |
#### Example
|
196 |
|
197 |
-
After obtaining the Phi-4-mini-instruct
|
198 |
|
199 |
```python
|
200 |
import torch
|
201 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
202 |
-
|
203 |
torch.random.manual_seed(0)
|
204 |
|
205 |
model_path = "microsoft/Phi-4-mini-instruct"
|
@@ -211,29 +211,30 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
211 |
trust_remote_code=True,
|
212 |
)
|
213 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
214 |
-
|
215 |
messages = [
|
216 |
{"role": "system", "content": "You are a helpful AI assistant."},
|
217 |
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
218 |
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
219 |
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
220 |
]
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
227 |
-
|
228 |
generation_args = {
|
229 |
"max_new_tokens": 500,
|
230 |
-
"return_full_text": False,
|
231 |
"temperature": 0.0,
|
232 |
"do_sample": False,
|
233 |
}
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
237 |
```
|
238 |
|
239 |
## Responsible AI Considerations
|
|
|
194 |
|
195 |
#### Example
|
196 |
|
197 |
+
After obtaining the Phi-4-mini-instruct chat models, users can use this sample code for inference.
|
198 |
|
199 |
```python
|
200 |
import torch
|
201 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
202 |
+
|
203 |
torch.random.manual_seed(0)
|
204 |
|
205 |
model_path = "microsoft/Phi-4-mini-instruct"
|
|
|
211 |
trust_remote_code=True,
|
212 |
)
|
213 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
214 |
+
|
215 |
messages = [
|
216 |
{"role": "system", "content": "You are a helpful AI assistant."},
|
217 |
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
218 |
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
219 |
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
220 |
]
|
221 |
+
|
222 |
+
# Prepare the input for the model
|
223 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
|
224 |
+
|
225 |
+
# Generate the response
|
|
|
|
|
226 |
generation_args = {
|
227 |
"max_new_tokens": 500,
|
|
|
228 |
"temperature": 0.0,
|
229 |
"do_sample": False,
|
230 |
}
|
231 |
+
|
232 |
+
output_ids = model.generate(input_ids, **generation_args)
|
233 |
+
|
234 |
+
# Decode the generated tokens to text
|
235 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
236 |
+
|
237 |
+
print(response)
|
238 |
```
|
239 |
|
240 |
## Responsible AI Considerations
|