File size: 4,345 Bytes
04280da
 
 
 
 
 
f84b08f
04280da
f84b08f
04280da
 
101cac7
9b5903f
04280da
 
 
 
 
7f4ef02
04280da
 
 
 
 
 
 
 
 
5304d23
acad8fd
04280da
acad8fd
 
 
 
04280da
 
 
 
5304d23
04280da
 
 
5304d23
acad8fd
04280da
 
 
 
 
 
 
 
 
 
 
 
5304d23
04280da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84b08f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: apache-2.0
language:
- en
tags:
- text-to-speech
base_model: sesame/csm-1b
pipeline_tag: text-to-speech
library_name: transformers
---

## CSM 1B (Safetensors)
Converted from the [original version](https://huggingface.co/sesame/csm-1b) to the Safetensors FP16 format. It also tracks downloads.

**2025/03/13** - We are releasing the 1B CSM variant. Code is available on GitHub: [SesameAILabs/csm](https://github.com/SesameAILabs/csm).

---

CSM (Conversational Speech Model) is a speech generation model from [Sesame](https://www.sesame.com) that generates RVQ audio codes from text and audio inputs. The model architecture employs a [Llama](https://www.llama.com/) backbone and a smaller audio decoder that produces [Mimi](https://huggingface.co/kyutai/mimi) audio codes.

A fine-tuned variant of CSM powers the [interactive voice demo](https://www.sesame.com/voicedemo) shown in our [blog post](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice).

A hosted [HuggingFace space](https://huggingface.co/spaces/sesame/csm-1b) is also available for testing audio generation.

## Usage

Setup the repo

```sh
python -m venv .venv
source .venv/bin/activate
curl -s -L https://raw.githubusercontent.com/SesameAILabs/csm/refs/heads/main/requirements.txt | pip install -r /dev/stdin

# You will need access to sesame/csm-1b and meta-llama/Llama-3.2-1B
huggingface-cli login
```

Generate a sentence

```py
from generator import load_csm_1b
import torchaudio

generator = load_csm_1b(device="cuda")

audio = generator.generate(
    text="Hello from Sesame.",
    speaker=0,
    context=[],
    max_audio_length_ms=10_000,
)

torchaudio.save("audio.wav", audio.unsqueeze(0).cpu(), generator.sample_rate)
```

CSM sounds best when provided with context. You can prompt or provide context to the model using a `Segment` for each speaker utterance.

```py
speakers = [0, 1, 0, 0]
transcripts = [
    "Hey how are you doing.",
    "Pretty good, pretty good.",
    "I'm great.",
    "So happy to be speaking to you.",
]
audio_paths = [
    "utterance_0.wav",
    "utterance_1.wav",
    "utterance_2.wav",
    "utterance_3.wav",
]

def load_audio(audio_path):
    audio_tensor, sample_rate = torchaudio.load(audio_path)
    audio_tensor = torchaudio.functional.resample(
        audio_tensor.squeeze(0), orig_freq=sample_rate, new_freq=generator.sample_rate
    )
    return audio_tensor

segments = [
    Segment(text=transcript, speaker=speaker, audio=load_audio(audio_path))
    for transcript, speaker, audio_path in zip(transcripts, speakers, audio_paths)
]
audio = generator.generate(
    text="Me too, this is some cool stuff huh?",
    speaker=1,
    context=segments,
    max_audio_length_ms=10_000,
)

torchaudio.save("audio.wav", audio.unsqueeze(0).cpu(), generator.sample_rate)
```

## FAQ

**Does this model come with any voices?**

The model open sourced here is a base generation model. It is capable of producing a variety of voices, but it has not been fine-tuned on any specific voice.

**Can I converse with the model?**

CSM is trained to be an audio generation model and not a general purpose multimodal LLM. It cannot generate text. We suggest using a separate LLM for text generation.

**Does it support other languages?**

The model has some capacity for non-English languages due to data contamination in the training data, but it likely won't do well.

## Misuse and abuse ⚠️

This project provides a high-quality speech generation model for research and educational purposes. While we encourage responsible and ethical use, we **explicitly prohibit** the following:

- **Impersonation or Fraud**: Do not use this model to generate speech that mimics real individuals without their explicit consent.
- **Misinformation or Deception**: Do not use this model to create deceptive or misleading content, such as fake news or fraudulent calls.
- **Illegal or Harmful Activities**: Do not use this model for any illegal, harmful, or malicious purposes.

By using this model, you agree to comply with all applicable laws and ethical guidelines. We are **not responsible** for any misuse, and we strongly condemn unethical applications of this technology.

**Authors**
Johan Schalkwyk, Ankit Kumar, Dan Lyth, Sefik Emre Eskimez, Zack Hodari, Cinjon Resnick, Ramon Sanabria, Raven Jiang, and the Sesame team.