Update README.md
Browse files
README.md
CHANGED
@@ -27,9 +27,9 @@ model-index:
|
|
27 |
type: mutiyama/alt
|
28 |
metrics:
|
29 |
- type: chrf
|
30 |
-
value:
|
31 |
- type: bertscore
|
32 |
-
value: 0.
|
33 |
pipeline_tag: translation
|
34 |
new_version: lyfeyvutha/nllb_350M_en_km_v10
|
35 |
---
|
@@ -114,8 +114,6 @@ outputs = model.generate(**inputs, generation_config=generation_config)
|
|
114 |
translation = tokenizer.decode(outputs, skip_special_tokens=True)
|
115 |
print(translation)
|
116 |
|
117 |
-
|
118 |
-
|
119 |
## Training Details
|
120 |
|
121 |
### Training Data
|
@@ -136,6 +134,12 @@ print(translation)
|
|
136 |
### Testing Data
|
137 |
The model was evaluated on the Asian Language Treebank (ALT) corpus, containing manually translated English-Khmer pairs.
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
### Results
|
140 |
This proof-of-concept model demonstrates that knowledge distillation can achieve reasonable translation quality with significantly reduced parameters (350M vs 600M baseline).
|
141 |
|
|
|
27 |
type: mutiyama/alt
|
28 |
metrics:
|
29 |
- type: chrf
|
30 |
+
value: 21.3502
|
31 |
- type: bertscore
|
32 |
+
value: 0.8983
|
33 |
pipeline_tag: translation
|
34 |
new_version: lyfeyvutha/nllb_350M_en_km_v10
|
35 |
---
|
|
|
114 |
translation = tokenizer.decode(outputs, skip_special_tokens=True)
|
115 |
print(translation)
|
116 |
|
|
|
|
|
117 |
## Training Details
|
118 |
|
119 |
### Training Data
|
|
|
134 |
### Testing Data
|
135 |
The model was evaluated on the Asian Language Treebank (ALT) corpus, containing manually translated English-Khmer pairs.
|
136 |
|
137 |
+
### Metrics
|
138 |
+
| Metric | Value |
|
139 |
+
|--------|-------|
|
140 |
+
| chrF Score | 21.3502 |
|
141 |
+
| BERTScore F1 | 0.8983 |
|
142 |
+
|
143 |
### Results
|
144 |
This proof-of-concept model demonstrates that knowledge distillation can achieve reasonable translation quality with significantly reduced parameters (350M vs 600M baseline).
|
145 |
|