File size: 1,591 Bytes
ca2f72a
 
 
 
e64d09b
 
 
 
b3b4638
e64d09b
 
 
 
 
 
 
 
b3b4638
e64d09b
 
b3b4638
e64d09b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3b4638
e64d09b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
license: mit
inference: false
---

A simple use case:

```shell
from transformers import Wav2Vec2Processor, HubertModel
import torch
from torch import nn
from datasets import load_dataset

# load demo audio and set processor
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate
processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")

# loading our model weights
model = HubertModel.from_pretrained("m-a-p/MERT-v0")

# audio file is decoded on the fly
inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs, output_hidden_states=True)

# take a look at the output shape, there are 13 layers of representation
# each layer performs differently in different downstream tasks, you should choose empirically
all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
print(all_layer_hidden_states.shape) # [13 layer, 292 timestep, 768 feature_dim]

# for utterance level classification tasks, you can simply reduce the representation in time
time_reduced_hidden_states = all_layer_hidden_states.mean(-2)
print(time_reduced_hidden_states.shape) # [13, 768]

# you can even use a learnable weighted average representation
aggregator = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1)
weighted_avg_hidden_states = aggregator(time_reduced_hidden_states.unsqueeze(0)).squeeze()
print(weighted_avg_hidden_states.shape) # [768]
```