File size: 9,743 Bytes
4f99d6c 29bc598 0350a12 b72e612 0350a12 abae57e f86fada 0350a12 46c8235 51dd1dd 0350a12 df4d0f2 4a7513e 3131632 df4d0f2 7ec44ef df59690 4880c2f 5360ea0 61b728e 7ec44ef 61b728e 7ec44ef c671503 7ec44ef 4880c2f 6c6b684 dc7f9d8 4880c2f dc7f9d8 c671503 dc7f9d8 4880c2f 7ec44ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
license: apache-2.0
language:
- en
- it
base_model:
- mistralai/Magistral-Small-2506
pipeline_tag: text-generation
library_name: transformers
tags:
- ita
- italian
- anita
- magistral
- 24b
- uniba
- bari
- italy
- italia
- Conversational
- LLaMantino
---
<img src="https://huggingface.co/m-polignano/ANITA-NEXT-24B-Magistral-2506-ITA/resolve/main/Anita-Next_full.png" alt="anita_next" border="0" width="600px">
<hr>
<!--<img src="https://i.ibb.co/6mHSRm3/llamantino53.jpg" width="200"/>-->
<h3><i>"Built on <b>mistral/Magistral-Small-2506</b>"</i></i></h3>
<p style="text-align:justify;"><b>ANITA-NEXT-24B-Magistral-2506-ITA</b> is a <b>Thinking Model</b> of the <a href="https://arxiv.org/abs/2405.07101"><b>ANITA</b></a> - <i>Large Language Models family</i>.
The model is a fine-tuned version of <a href="https://huggingface.co/mistralai/Magistral-Small-2506"><b>Magistral-Small-2506</b></a> (a fine-tuned <b>Mistral model</b>).
This model version aims to be the a <b>Multilingual Model</b> 🏁 (EN 🇺🇸 + ITA🇮🇹) to further fine-tuning on Specific Tasks in Italian.</p>
❗❗❗Use at your own risk. The model may generate hallucinations, incorrect, invented, offensive, unethical or dangerous responses. We are not responsible for any dangerous/offensive/criminal use. The model is release for research only purposes.❗❗❗
The 🌟**ANITA project**🌟 *(**A**dvanced **N**atural-based interaction for the **ITA**lian language)*
wants to provide Italian NLP researchers with an improved model for the Italian Language 🇮🇹 use cases.
The **NEXT** family includes **four models**:
- m-polignano/ANITA-NEXT-24B-Magistral-2506-ITA - **General Purpose**
- m-polignano/ANITA-NEXT-24B-Dolphin-Mistral-UNCENSORED-ITA - **Uncensored**
- m-polignano/ANITA-NEXT-24B-Magistral-2506-VISION-ITA - **Vision-Language**
- m-polignano/ANITA-NEXT-20B-gpt-oss-ITA - **Agentic Ready**
<hr>
**GGUF - OLLAMA**: [m-polignano/ANITA-NEXT-24B-Magistral-2506-ITA-GGUF](https://huggingface.co/m-polignano/ANITA-NEXT-24B-Magistral-2506-ITA-GGUF)
<hr>
**Colab Demo:** [A100 - 40GB - Colab Notebook](https://colab.research.google.com/drive/1mhZLAdpOr3TRq-ZTG4XD52J98orHj_na?usp=sharing)<br>
The Model runs on a single GPU, 19.56GB of VRAM by using a *4bit Quantization*.
<hr>
## Specifications
- **Model developers**: <br><a href="https://marcopoli.github.io/">Ph.D. Marco Polignano</a> - University of Bari Aldo Moro, Italy <br> <a href="https://huggingface.co/swap-uniba">SWAP Research Group</a> <br>
- **Variations**: The model release has been **supervised fine-tuning (SFT)** using **QLoRA** 4bit, on instruction-based datasets. **DPO** approach over the *mlabonne/orpo-dpo-mix-40k* dataset is used to align with human preferences for helpfulness and safety.
- **Input**: Models input text only.
- **Language**: Multilingual 🏁 + Italian 🇮🇹
- **Output**: Models generate text and code only.
- **Model Architecture**: *Mistral architecture*.
- **Context length**: 128k, but degradate after 40k.
- **Library Used**: [Transformers 4.56.0.dev0] (https://huggingface.co/docs/transformers/index)
<hr>
## Playground
To use the model directly, there are many ways to get started, choose one of the following ways to experience it.
### Prompt Template
```
<s>[SYSTEM_PROMPT]Sei un assistente AI per la lingua italiana di nome ANITA-NEXT (Advanced Natural-based interaction for the ITAlian language Next Generation) creato dal ricercatore Marco Polignano, Università degli Studi di Bari Aldo Moro, Italia. Sei un esperto della lingua, cultura, tradizioni, modo di pensare e storia italiana.
L'utente ti chiederà di risolvere un compito o rispondere ad una domanda. Rispondi e ragiona usando la lingua della domanda, preferendo l'Italiano.
Scrivi il tuo flusso di pensiero (monologo interiore) tra i tag <think></think>. Ragiona in modo disinvolto, scrivendo riflessioni e/o bozze, come se stessi lavorando a un esercizio su un foglio di carta.
Successivamente, scrivi la soluzione in modo chiaro, corretto, semplice ed esaustivo basandoti sul riassunto del tuo flusso di pensiero.
Se necessario, usa la notazione markdown per formattare la risposta.[/SYSTEM_PROMPT][INST]{ USER Prompt }[/INST]<think>{ ASSIST Thinking }</think>{ ASSIST Prompt }</s>
```
### Transformers
For direct use with `transformers`, you can easily get started with the following steps.
- Firstly, you need to install transformers via the command below with `pip`.
```bash
pip install -U --no-deps bitsandbytes accelerate xformers transformers peft trl cut_cross_entropy unsloth_zoo
pip install sentencepiece protobuf "datasets>=3.4.1,<4.0.0" "huggingface_hub>=0.34.0" hf_transfer
```
- Right now, you can start using the model directly.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model_dir = "m-polignano/ANITA-NEXT-24B-Magistral-2506-ITA"
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_dir,
quantization_config=nf4_config,
device_map="auto",
torch_dtype=torch.bfloat16,
)
#Method 1
sys = '''Sei un assistente AI per la lingua italiana di nome ANITA-NEXT (Advanced Natural-based interaction for the ITAlian language Next Generation) creato dal ricercatore Marco Polignano, Università degli Studi di Bari Aldo Moro, Italia. Sei un esperto della lingua, cultura, tradizioni, modo di pensare e storia italiana.
L'utente ti chiederà di risolvere un compito o rispondere ad una domanda. Rispondi e ragiona usando la lingua della domanda, preferendo l'Italiano.
Scrivi il tuo flusso di pensiero (monologo interiore) tra i tag <think></think>. Ragiona in modo disinvolto, scrivendo riflessioni e/o bozze, come se stessi lavorando a un esercizio su un foglio di carta.
Successivamente, scrivi la soluzione in modo chiaro, corretto, semplice ed esaustivo basandoti sul riassunto del tuo flusso di pensiero.
Se necessario, usa la notazione markdown per formattare la risposta.'''
messages = [
{"role" : "system", "content" : sys},
{"role" : "user", "content" : "Chi è Carlo Magno?"}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
for k,v in inputs.items():
inputs[k] = v.cuda()
outputs = model.generate(**inputs, max_new_tokens=32786, do_sample=True, top_p=0.9, temperature=0.7)
results = tokenizer.batch_decode(outputs)[0]
print(results)
#Method 2
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch # Import torch to use .cuda() if needed
messages = [
{"role" : "user", "content" : "Chi è Marco Polo?"}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
# Move inputs to CUDA if your model is on CUDA
for k,v in inputs.items():
inputs[k] = v.cuda()
# --- 4. Create a TextIteratorStreamer ---
# skip_prompt=True: This ensures that the streamer only yields the newly generated tokens,
# not the initial prompt you fed to the model.
# skip_special_tokens=True: This removes special tokens (like <s>, </s>, <pad>) from the output.
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# --- 5. Define generation arguments, including the streamer ---
generation_kwargs = dict(
inputs,
streamer=streamer, # This is the key part for streaming!
max_new_tokens=32786,
do_sample=True,
top_p=0.9,
temperature=0.7,
# Add any other generation arguments you need
)
# --- 6. Run model.generate in a separate thread ---
# This is crucial because model.generate is a blocking call.
# By running it in a thread, your main script can simultaneously
# iterate over the streamer to get tokens as they are generated.
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# --- 7. Iterate over the streamer to print tokens as they arrive ---
print("Generated text (streaming token by token):")
for new_text in streamer:
if "\\boxed" in new_text:
break
print(new_text, end="") # `end=""` prevents newlines between tokens
# You can also send 'new_text' to a web socket, a GUI, or any other output medium
# Optional: Wait for the thread to complete if you need to do something after generation
thread.join()
```
<hr>
## Citation instructions
```bibtex
@misc{polignano2024advanced,
title={Advanced Natural-based interaction for the ITAlian language: LLaMAntino-3-ANITA},
author={Marco Polignano and Pierpaolo Basile and Giovanni Semeraro},
year={2024},
eprint={2405.07101},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtex
@article{rastogi2025magistral,
title={Magistral},
author={Rastogi, Abhinav and Jiang, Albert Q and Lo, Andy and Berrada, Gabrielle and Lample, Guillaume and Rute, Jason and Barmentlo, Joep and Yadav, Karmesh and Khandelwal, Kartik and Chandu, Khyathi Raghavi and others},
journal={arXiv preprint arXiv:2506.10910},
year={2025}
}
``` |