File size: 2,503 Bytes
52470a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33ef941
52470a7
 
 
33ef941
52470a7
 
 
 
 
 
 
 
 
33ef941
 
52470a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33ef941
 
 
 
 
 
 
 
 
 
 
 
52470a7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- Jzuluaga/atcosim_corpus
metrics:
- wer
model-index:
- name: Whisper small - Whisper with atcosim
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: 'This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM.'
      type: Jzuluaga/atcosim_corpus
      args: 'config: en, split: test small split [3000]'
    metrics:
    - name: Wer
      type: wer
      value: 8.947972793922798
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper small - Whisper with atcosim

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM. dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2504
- Wer: 8.9480

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0569        | 0.5319 | 100  | 0.3078          | 11.7922 |
| 0.0307        | 1.0638 | 200  | 0.2728          | 10.8515 |
| 0.0253        | 1.5957 | 300  | 0.2762          | 10.7190 |
| 0.0066        | 2.1277 | 400  | 0.2551          | 9.0761  |
| 0.0061        | 2.6596 | 500  | 0.2526          | 9.5795  |
| 0.002         | 3.1915 | 600  | 0.2504          | 9.0010  |
| 0.0019        | 3.7234 | 700  | 0.2561          | 9.2880  |
| 0.0007        | 4.2553 | 800  | 0.2535          | 9.1026  |
| 0.001         | 4.7872 | 900  | 0.2495          | 8.9259  |
| 0.0003        | 5.3191 | 1000 | 0.2504          | 8.9480  |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1